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1    EXECUTIVE SUMMARY 

Our work during this contract period began with emphasis on electromagnetically induced 

transparency, slow light, and its application to making ultra-long biphotons. As the program 

evolved, we increased emphasis on novel techniques to produce, measure, and utilize both 

long and short biphotons. 

We begin by summarizing the key property of time-energy entangled biphotons. This is: 

if an observer at point A chooses to measure the frequency of an arriving photon he will then 

know to high accuracy the frequency of the photon which will be measured by an observer 

at point B. But instead, if the observer at point A chooses to measure the time of arrival of 

a photon at his location, he will then know, again to high accuracy, the time of arrival of 

the photon at point B. The accuracy of these measurements is not limited by the Heisenberg 

uncertainty principle. 

We turn next to what is meant by long and short. Typical biphotons as generated by 

nonlinear optical crystals have temporal lengths in the range of between 0.1 ps and 10 ps. 

Such photons are not resolvable by presently existing photo detectors. These detectors, 

measure whether or not a photon is present, but may not be used to examine the functional 

form of the photonic wave packet. 

By using the techniques of slow light and working under AFOSR-ARO and DARPA 

support, in 2005 our group demonstrated the first method of generating temporally long 

biphotons.   The length of these photons is controlled by the group delay in the nonlinear 



media and in early experiments resulted in photons with a length of about 40 ns. A key 

accomplishment of the present program was the extension of this length to photons whose 

length could be continuously varied from 50 to 900 ns. Of importance, the line width of 

these photons was less than the natural linewidth of the rubidium vapor that was used 

to produce them. This is important because optical nonlinearities when produced using 

electromagnetically induced transparency continue to increase in the subnatural linewidth 

regime and in the absence of dephasing may be made arbitrarily large. This should soon 

allow the demonstration of nonlinear optics with single photons. 

We mention a surprise that occurred during this work. In the course of observing long 

biphotons with a length determined by the slow optical group velocities, we found that 

the photonic wave packets had a sharp leading edge spike on their front edge. Following 

a suggestion by Dan Gauthier we recognized that this front edge spike is a Sommerfeld- 

Brillouin precursor. This observation is important because it clarifies, for both slow light 

and fast light, that information will always be transmitted at the speed of light in vacuum. 

In January 2008 we recognized that we had the capability to modulate single photons for 

the first time. To do this we used the Stokes photon of a biphoton pair to set the time origin 

for electro-optic modulation of the wave function of the anti-stokes photon. With the time 

origin determined, the modulator could arbitrarily modulate either the amplitude or phase 

of the anti-stokes photon. The technique therefore provides the technology for studying the 

response of atoms to shaped single-photon waveforms on a time scale comparable to the 

natural linewidth of target atoms. 

The next step in our work in modulating biphotons was the development of a method for 

measuring their length using slow detectors. The essential idea is that modulation in the time 

domain followed by slow integration constitutes a Fourier transformation. The experimental 

technique is to measure the coincidence count rate between single photon counting modules as 

a function of an applied sinusoidal frequency. The inverse Fourier transform of the data then 

yields the biphoton waveform. Though this experiment was a proof of principle experiment, 

ultimately it could be used to measure wavepacket profile of biphotons when sufficiently fast 

photo detectors are not available. 



We are now working on an important extension of our work on modulating single pho- 

tons. This is the application of spread spectrum techniques at the single photon level. Spread 

spectrum is well known in the communications industry as a technique for avoiding inter- 

ference and jamming, and at times increasing information capacity. Our work is the first 

demonstration of this technique to single photons. 

We turn next to our work on short biphotons. Our first contribution was a PRL entitled 

Chirp and Compress : Toward Single-Cycle Biphotons. In this work we described a method 

for generating time-energy entangled photons with a spectral width that exceeds an octave, 

and of compressing their spectrum to produce biphotons whose temporal length is a single 

optical cycle. The elements of the technique are the suggestion for using parametric down 

conversion in a periodically poled material to spontaneously generate pairs of entangled 

photons whose instantaneous frequencies are chirped in opposite directions and the use of 

the non-local nature of entangled photons to allow the dispersion, as experienced by one 

photon, to cancel out the dispersion of the second photon and to compress the biphoton 

wave packet. 

Our first experimental work in this area was the development of a novel resonant sum 

frequency generation technique (PRL February 2009). This work demonstrates a rather 

amazing effect where we take two single photons that each have a broad spectral linewidth 

and sum them. We find that though each photon has a broad linewidth, the linewidth of 

the sum frequency photon is as narrow as that of the pumping laser. Also, the output (sum) 

power is linear rather than quadratic in input power. These effects both derive from the 

quantum behavior of single photons. 

In the course of studying nonlocal dispersion compensation as described above, we recog- 

nized that there should be a new quantum effect that we have termed as nonlocal modulation. 

Assume that single and idler photons pass through sinusoidal phase modulators located at 

different locations. These modulators are driven at the same modulation frequency and are 

connected by cable such that their relative phase may be varied. After passing through 

the modulators the single and idler photons are dispersed, for example by a prism, and 

the relative positions of the single and idler photons are correlated.   We find :  When the 



modulators are run with the same phase the modulation depths add; when they are run in 

phase opposition the modulation depths subtract. Two distant modulators with the same 

modulation depth and opposite phase therefore have the same frequency correlation as when 

both modulators are absent. This effect is entirely quantum mechanical. Mathematically 

it results because, quantum mechanically, one adds probability amplitudes before squaring, 

while classically one squares before adding. 

As this contract ends, we are beginning work in the area on nonlinear and quantum optics 

at x-ray wavelengths. To a great extent we are motivated by the new 1.5 Angstrom free 

electron laser that is now operating at Stanford. We anticipate experiments to demonstrate 

frequency doubling of this laser with the further objective of using SHG as a correlator and 

diagnostic for the laser itself. 

2    Subnatural Linewidth Biphoton Generation with 2-D 
MOT 

The most significant experimental advance in cold atom EIT research project during perfor- 

mance period is that we observed subnatural linewidth biphotons with our MOT generation 

II, which is our new platform for biphoton generation in a series of modulation studies at 

single photon level. Figure 1 shows both experimental configuration (geometry) and mech- 

anism of parametric paired-photon generation. In contrast to previous MOT constructed in 

early grant period (W911NF-04-1-0105), the new 2-D 85Rb MOT has a cigar shaped atom 

cloud(~1.7 cm long and an aspect ratio of 25) and consequently a large optical depth in the 
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Figure 1: Upper: Biphoton generation in a double-A system, (a) Experimental configura- 
tion. Fj and F2 are narrow-band optical frequency niters, (b) 85Rb energy level diagram. 
In the presence of counter-propagating pump (u)p) and coupling (coc) beams, Stokes (u>s )and 
anti-Stokes, (u>as) photons are generated into opposing single-mode fibers. Lower: 2-D MOT 
apparatus. The vacuum cell is 6 cm size ceramic structured octagon. The cell is located in 
the middle of water cooled trapping coil(racetrack-shaped cage). 

longitudinal direction; moreover, its cylindrical quadrupole trapping field results in minimal 

longitudinal magnetic field gradient and hence greatly reduces the inhomogeneous Zeeman 

broadening of the m-states of the 5S\/2 level. The experimental cycle comprises 4.5 ms of 

trapping time and 0.5 ms paired photon generation window. At the end of the trapping 

cycle, the rubidium cloud is prepared in 5S\/2 level by turning off the repumping laser 0.3 

ms before turning off the trapping laser; counter-propagating, circularly polarized, cw pump 

(UJP) and coupling (u>c) lasers are subsequently turned on and phase-matched, paired Stokes 

(u3) and anti-Stokes (ujas) photons are spontaneously generated and propagate in opposite 

directions as shown in the figure. 



Figure 2: Biphoton wave packet data for three slow group delay cases. The upper row plots 
are anti-Stokes EIT scan data(o) and EIT fit (blue curve), the lower row plots are paired- 
photon coincidence count data(+) and predicted wave packet shape with time bin width of 1 
ns for 800 s(lower row). Propagation delay of anti-Stokes pulse(red traces in inserts of lower 
row plots) are also presented for three slow group delay((r9) cases. Experimental parameters 
are: Left: (rg ~ 50ns) OD=7, fic = 4.207i3, ftp = I.I6713, and Ap = 48.677i3. Middle: 
{jg ~ 320ns) OD=53, ftc = 4.2O713, ftp = I.I6713, and Ap = 48.67713. Right: (r9 ~ 900ns) 
OD=53, ftc = 2.35713, ftp = I.I6713, and Ap = 48.67713. 

The optical depth of the 2-D 85Rb MOT can be varied up to 62, which gives us enough 

parameter space to verify the relation between the optical group delay and the length of 

the biphoton waveform. Figure 2 shows sets of anti-Stokes EIT scan and paired-photon 

coincidence counts for three anti-Stokes EIT group delay cases, which is controlled by varying 

the optical depth and the coupling laser power(r9 ~ (27i3/|ftc|
2)./V<TL, where NaL is the 

optical depth and 713 is the dephasing rate of level |3)). The trapping laser used for these 

experimental runs has a power of 160 mW, a beam diameter of 2 cm, and is red detuned by 

20 MHz from the |5Si/2,.F = 3) —> |5P3/2,F = 4) transition. A repumping laser is locked 

to the |5S!/2,.F = 2) —• |5P3/2,-F = 2) transition, has a power of 80 mW, and overlaps one 

of six trapping beams. The pump laser is circularly polarized (cr~), has a 1/e2 diameter of 

1.46 mm, and is blue detuned from the |1) —> |4) transition by 146 MHz, i.e. Ap = 48.677i3. 

The coupling laser is circularly polarized {(T+), has a 1/e2 beam diameter of 1.63 mm and 

is on resonance with the |2) —» |3) transition. The counter-propagating pump and coupling 



beams are collinear and set at a 2 degree angle from the longitudinal axis of the MOT. The 

Stokes (a~) and anti-Stokes (a+) photons are coupled into opposing single mode fibers after 

passage through A/4 wave plates and polarization beam splitters (PBS). The Stokes and 

anti-Stokes fiber coupling efficiency is 70% and the 1/e2 waist diameter of their foci is 220 
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Figure 3: (a) Measured correlation time vs measured anti-Stokes group delay. The solid line 
is a linear least squares fit. (b) Paired counts in a 1 ns bin in 800 s as a function of the 
optical depth. 

As shown in Fig. 2, the temporal length of biphoton wavepacket generated in high OD case 

are much longer(by more than one order) than previously reported in our phase I research. 

It also means that the generated biphoton has much narrowed bandwidth. The predicted 

biphoton packet waveforms in lower row plots of Fig. 2 are computed with all parameters 

obtained from the EIT measurements and vertically scaled to fit the experimental data. The 

calculated biphoton linewidths are 9.66, 2.36 and 0.75 MHz respectively. These linewidths 

are comparable to the measured EIT bandwidths and in the latter two cases are less than 

the 6 MHz natural linewidth of Rb D line. Thanks to the 2-D MOT, which is designed to 

have increase in OD and decreases in dephasing, the biphoton generation now is in the linear 

group delay regime where T9 > rr and the correlation width directly follows group delay time 

as shown in data plot of Fig. 3(a). 

Having taken into account the filter and etalon transmissions, the fiber to fiber coupling 

efficiency, the detector quantum efficiencies and the duty cycle, for the conditions of Fig. 2, 

we observe a total of 3213, 31674, and 22000 paired counts in 800 seconds, which correspond 
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to generation rates of 1275, 12569, and 8730 pair/s, respectively. Higher generation rates 

can be achieved by increasing the pump laser power. With Q,p — 6.88713, the paired photon 

generation rates are 4.0 x 104 and 9.0 x 104 pair/s at OD=17 and 30, respectively. Figure 3(b) 

shows that the number of paired counts varies linearly with the optical depth. Though 

the generation rate per spectral bandwidth varies as the square of the optical depth, the 

bandwidth reduces linearly with this depth leading to the linear dependence. Experimentally, 

under optimum conditions, we observe 74% of the Stokes photons to be paired. We also 

observe that all of the correlation data violate the Cauchy-Schwarz inequality by as much as 

a factor of 11600. 

It is noticeable that there is a sharp peak at the leading edge of the correlation data 

generated for high optical depth case as shown in lower plots in middle and right column of 

Fig. 2. This feature is Sommerfeld-Brillouin precursor type as in the case for propagating 

classical wave packets. The physical picture is the following: the detectors register biphoton 

coincidence counts versus the time r = tas — ts; the earliest portion of the biphoton wave 

packet comes from the high frequency portion of the spectrum, which is not in the range of 

large group delay, and is thought of as the Sommerfeld precursor. At slightly later times the 

low frequency Brillouin components arrive at the detector and beat with the simultaneously 

arriving high frequency components. Though precursors are now understood in the optical 

region and have even been observed long ago with correlated gamma-ray photons, our work 

reports the first observation of precursors as measured by single photon correlation. 

The 2D MOT we have developed is likely to allow immediate improvements in single 

photon read-write techniques, in EIT-based quantum memory, and in nonlinear optics with 

cold atoms. Each of these areas requires the same ingredients as demonstrated here; i.e., low 

dephasing rate, subnatural linewidth, and high optical depth. For example, the efficiency of a 

nonlinear process continues to improve as the photon linewidth is reduced below the natural 

linewidth, and is ultimately limited by the dephasing rate of the non-allowed transition. 

For more details please see: 1) Shengwang Du, Pavel Kolchin, Chinmay Belthangady, 

G. Y. Yin, and S. E. Harris, "Subnatural Linewidth Biphotons with Controllable Temporal 

Length," Phys.   Rev.   Lett.   100, 183603 (May, 2008); 2) Shengwang Du, Pavel Kolchin, 

9 



Chinmay Belthangady, G. Y. Yin, and S. E. Harris, "Observation of Optical Precursors at 

the Biphoton Level," Optics Letters 33, 2149 (September, 2008). 

3    Theory of EIT- based Paired Photon Generation 

Our theoretical model is highlighted on paired photon generation in the double-lambda 

atomic system. We first reexamine the conditions required for the system to operate in 

the group delay regime. We find that the optical depth of the atomic system has to be 

sufficiently high in order to avoid the filtering of the generation bandwidth of paired photons 

by the transparency window. Second, we have extended the theoretical treatment beyond 

the ground state approximation. This allows us to properly include and analyze the effect of 

Langevin noise fluctuation on the atomic system and solve the problem of its return to the 

ground state after the emission of Stokes and anti-Stokes photon pairs. We also addressed 

the important questions: 1) "What are the effects of the optical thickness of the atomic 

sample on paired and single photon generation?" 2) "Does every Stokes photon have its 

paired anti-Stokes photon?" 

With low parametric gain and high optical depth we show that the system can produce 

highly correlated photon pairs. The shape of the intensity correlation function and the 

emission bandwidth depend on the coupling laser Rabi frequency and the optical depth of the 

atomic sample. Compared to SPDC, paired photon generation in the double-lambda atomic 

system is affected by Raman gain in the Stokes channel and EIT in the anti-Stokes channel. 

EIT, through the absorption at the poles, cuts the emission bandwidth. In order to enter 

a regime where the EIT window is sufficiently large and therefore the emission bandwidth 

is controlled to a large extent by the phase-matching process in the presence of large group 

delay, the optical depth of the atomic sample has to be larger than 10. High optical depth 

10 



substantially reduces the influence of Langevin noise fluctuations and Raman scattering on 

paired photon generation so that the Stokes and anti-Stokes photons are generated mostly in 

pairs. We therefore suggest the use of a cigar shaped atomic cloud with high optical depth 

in the longitudinal direction. 

For more details please see: P. Kolchin,"Electromagnetically-Induced-Transparency-Based 

Paired Photon Generation," Phys. Rev. A 75, 033814 (March 2007). Kolchin's dissertation 

chapter 4 "Theory of EIT based Paired Photon Generation" is included in this report as 

Appendix C. 

4    Electro-Optic Modulation of Single Photons 

We have demonstrated conditional shaping of single photon waveforms using electro-optic 

modulators. We use the Stokes photon of a biphoton pair to set the time origin for electro- 

optic modulation of the wave function of the anti-Stokes photon. This technique allows 

arbitrary control of both phase and amplitude of single photons. A key requirement for this 

modulation scheme is that the temporal length of biphoton wavepacket, which is represented 

by correlation time in experiment, is much longer than modulation response time designed 

for experiment. The subnatural linewidth biphoton source described in the previous section 

producing biphotons with correlation times adjustable in the 50-900 ns range is ideally suited 

for this application. Our single photon counting modules(about 350 ps of timing resolution) 

and data system has fast enough temporal resolution to observe AM modulation in this 

work. 

Figure 4 shows the schematic of the experiment. We use counterpropagating cw pump 

and coupling lasers to generate time-energy entangled pairs of Stokes and anti-Stokes photons 

which propagate in opposite directions and are collected into single mode fibers as described 

11 
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Figure 4: Schematic of paired photon generation and conditional modulation. A Stokes 
photon detected by an SPCM sets the time origin for shaping the anti-Stokes photon with 
an electro-optic modulator. To within the accuracy of the SPCM, this allows shaping of 
both the amplitude and phase of the anti-Stokes photon. 

in section A. The detection of the Stokes photon at Dl sets the time origin for firing the 

function generator that drives the electro-optic modulator which in turn modulates the anti- 

Stokes photon. Verification of the single photon nature of the modulated anti-Stokes photon 

is done using a 50-50 beam splitter and detectors D2 and D3. Their coincidence data G23 (r) 

is expected to show a dip at r = 0 proving nonclassical nature of modulated anti-Stokes 

signal. 

The electro-optic amplitude modulator consists of phase modulators in both arms of a 

Mach-Zehnder (MZ) interferometer. The degree of phase control in both arms depends on 

the type of the modulator. We use a z-cut modulator that requires Vn = 1.75 volts to 

cause the n phase shift required to go from minimum to maximum transmission and can 

be operated at a maximum frequency of 10 GHz. One port of the output beam splitter 

of the MZ interferometer is terminated so that the portion of the photon wave function 

that is not transmitted is lost. In general, if a Stokes photon is detected at time ti, and 

the modulator is activated conditioned on this detection then, in the Heisenberg picture, 

the anti-Stokes operator at the output of the modulator is related to the input operator 

by aout(t2) = Jg(t2,t'2)ain(t'2)dt'2. If there are no dispersive elements, then to within an 

unimportant phase factor we may write ciputih) = m(T)ciin{h) • The correlation function in 

the presence of the modulator is related to that in the absence of the modulator by 

12 
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With the biphoton wavefunction given by \&(£i,£i + r) the modulated (conditional) single 

photon wavefunction is m(r)\&(£i,£i + r). We adjust the bias voltage at the input of mod- 

ulator so that the output of the modulator m(T) is related to the input voltage V(r) by 

m(r) = sin [<f>(r)] exp [ia</>(r)], where </>(r) = 7TV(T)/(2I4), and a is a phase modulation 

parameter. For a z-cut amplitude modulator as used here a = 0.75, but may be eliminated 

by using an x-cut modulator. 

50 100 

Vli <ns> 

200 

Figure 5: Di-D% coincidence counts in a 1 ns bin as a function of the delay between Stokes and 
anti-Stokes photons, (a) Modulated (k) and unmodulated (•) waveforms, (b) Waveforms 
with Gaussian (•) and rising exponential (k) shapes. The experimental data (•, k) were 
collected over 2000 s. The solid curves for cases (a) and (b) are plotted from theory. The 
inset in part (a) is the scope trace of the output voltage of the function generator. 

The principal experimental results of this work are shown in Figure 5. In part (a), the 

modulation signal, shown as an inset, is a set of two square pulses. Of importance, there 

is no vertical scaling between the modulated and non-modulated waveforms. In Fig. 5(b), 

we show photons modulated with two different waveforms. In the first case the modulator 
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is driven with a gaussian pulse. In the second case we design the function generator output 

so as to compensate for the nonlinear distortion of the modulator in such a way that the 

output of the modulator is an exact rising exponential. 

We define the retrieval efficiency, £R of a paired photon source as the probability to gener- 

ate a single anti-Stokes photon on the condition that its paired Stokes photon is detected. For 

the non-modulated photon we measure ER — 3.5%. When losses at the beamsplitter, modu- 

lator, filters, fiber to fiber coupling and detector efficiency are backed out, this corresponds to 

a retrieval efficiency of 55%. For the modulated photons the measured retrieval efficiencies of 

the two square pulses, the rising exponential and gaussian waveforms are £R = 1.3%, 0.61% 

and 0.9% respectively. With losses backed out these efficiencies are 21%, 9.4% and 11.2% 

respectively. 

Stokes Rate (x 10  sec' ) 

Figure 6: (color online) Conditional three-fold correlation function gJnd(Q) as a function 
of the Stokes rate for unmodulated (•) and modulated (A) single-photon generation. The 

dashed curve shows the theoretical limit for f^J^O) in the absence of excess light scattering 
(see text). 

Since single photons incident on a beamsplitter must go into one output port or the other, 

in the ideal case where there are no two-photon events and there is no excess scattered light, 

we would expect no three-fold coincidences at the detectors. A measure of the quality of 

heralded single photons that quantifies suppression of two photon events is given by the 
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conditional correlation function: 

(2)  ,m     NU3Ni 
9caad(Q) =   M    M    • (4-2) iVi2iVi3 

Here N\ is the number of the Stokes counts at D\, iV12, and Ni3 are the number of two-fold 

coincidence counts within a time window Tc at detectors D\, D<i and D\, D3; and N123 is 

the number of three-fold coincidence counts within this same time window. 

In Figure 6 triangles and squares show measured <7cO„d(0) versus Stokes rate with and 

without modulation. The modulation is done with the same signal as in Fig. 5(a). We set 

Tc equal to the nominal length of the unmodulated biphoton (285 ns). At a Stokes rate of 

2.2 x 104 sec-1 which corresponds to f2p = 0.26 r3, we obtain <7cO„d(0) = 0-2 ± 0.04 and 

9cond(®) ~ 0-21 ±0.07 for the unmodulated and modulated waveforms respectively. The fact 

that the measured g^di®) *s ^ess *nan 0-5, (the limiting value for a two photon Fock state), 

is indicative of the near-single photon character of the light source. 

Because there is a small probability for the parametric down conversion process to generate 

multiple pairs of biphotons, even in the absence of spurious light scattering, the conditional 

correlation function is not zero. The dashed curve In Fig. 6 shows the theoretical prediction 

for the conditional correlation function that results from such multiple scattering events. 

Because of light scattering from both the pump and coupling lasers, the experimental curves 

lie above this limiting value. 

We perform two control experiments: In the first we remove the 30 m long optical fiber 

so as to modulate the uncorrelated background noise in the tail of the correlation function. 

Here, we measure gcond(0) — 1.2. In the second experiment we apply modulation at random 

times, using an external 10 MHz digital signal as a trigger for the function generator. As 

expected, we observe a reduced rate of paired counts and no change in the shape of the 

correlation function. 

The method demonstrated in this work might be used to optimally load a single photon 

into an optical cavity, or instead, to study the transient response of atoms to different single 

photon waveforms. In the context of light-matter interfaces, it may improve the efficiency 

of storage and retrieval of single photons in atomic ensembles.   For quantum information 
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applications, both amplitude and phase modulators could be used to allow full control over 

the single photon waveforms. For example, one could a construct a single photon waveform 

that is a train of identical pulses with information encoded into the relative phase differ- 

ence between consecutive pulses. The importance of the electro-optic method is its speed 

and ability to modulate phase as well as amplitude. The technique provides the technol- 

ogy for studying the response of atoms to shaped single photon waveforms on a time-scale 

comparable to the natural linewidth. 

For more details please see: P. Kolchin, Chinmay Belthangady, Shengwang Du, G.Y. Yin, 

and S.E. Harris, "Electro-Optic Modulation of Single Photons," Phys. Rev. Lett. 101, 

103601 (September, 2008). 

5    Modulation and Measurement of Time-Energy En- 
tangled Photons 

In 2008 we reported the demonstration of conditional temporal shaping of single photon wave- 

forms using electro-optic modulators. In this report, we extend this work to the modulation 

of biphotons. A highlight is the invention and first experimental demonstration of a Fourier 

technique that allows the measurement of fast biphotons using slow detectors. Figure 1 shows 

(a) the schematic of our proof-of-principal experiment and (b) the laser/rubidium-atom in- 

teraction diagram for paired phoi on generation. Parametrically down-converted spontaneous 

signal and idler photons, or as in the experiment of this work, Stokes and anti-Stokes pho- 

tons, are incident on synchronously driven sinusoidal amplitude modulators. Without any 

modulation, in general, the setup will directly yield the Glauber correlation function G^(r), 

where r is the relative arrival time of the signal and idler photons, with its time resolution 

limited by the speed of photon detector (SPCM) and TDC system.   As shown below, our 
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new method, by adding AM photon modulation, will give temporal biphoton correlation 

measurement with time resolution beyond the SPCM-TDC limit. 

When amplitude modulators m\(t) and 7712(2) are introduced between the down conversion 

source and the detectors, the modulated correlation function is then written as 

G$(t,t + T) = \m1(t)\
2\m2(t + T)\2G$)(T) (5.1) 

where the subscripts Mand 0 indicate cases of modulation on or off. In real experiments, 

photons arrive at a random time t which is averaged out over the data collection period T: 

G^(r) = M(r)G?\r), 
1 rT 

M{T) = -        \mi(t)\
2 \m2{t + T)\

2dt, (5.2) 

where M.{T) is the intensity correlation function of the modulators in the signal and 

idler channels. If both channels are modulated by sinusoidal amplitude modulators with 

frequency UJ and a common phase ip, that is by modulators m\(t) = 7712(2) = cos(cut + if), 

then, irrespective of this phase, A4(T) = 1/4 + l/8cos(2o;r). 

If the detectors are slow in the sense that they integrate over the length of the bipho- 

ton wave packet , but short as compared to the inverse rate of biphoton generation, the 

measurement becomes an integral 

/•OO /"OO 

/    G(${T,u)dr = 1/8 /    [2 + cos(2o;r)]Gi2)(r)^. (5.3) 
Jo Jo 

We neglect the DC term and normalize to obtain the Fourier cosine transform pair 

F(2w) = J-f   G0
2\r)cos(2cjT)dT, 

G
{2)

(T) = J-[   F{2uj)cos{2uT)dw. (5.4) 

In the measurement procedure, F(2cu) is the measured coincidence count rate between low 

speed single photon counting modules (SPCMs) as a function of the sinusoidal modulation 

frequency u. The slow detection system (SPCM+TDC) means that hardware integrates 

signals over r, which is the relative arrival time of the signal and idler photons.  We then 
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Figure 7: (a) Schematic of experiment. Long biphotons are generated in the cold-atom Rb 
cell. Using an optical fiber, the anti-Stokes photon is delayed by 175 ns, and the photons are 
modulated by synchronously-driven sinusoidal modulators before correlation detection with 
a time-to-digital converter, (b) Energy level diagram for paired photon generation in Rb. 

apply the above inverse Fourier cosine transform to yield the Glauber correlation function 

G0 (r) and therefore the square of the absolute value of the biphoton wavefunction. 

Our experiment makes use of long biphotons that are produced using the techniques of 

electromagnetically induced transparency and slow light. The use of long biphotons allows 

us to compare the correlation function measured by our Fourier transform technique with 

a direct measurement using fast detectors and a TDC. The experimental configuration is 

shown in Fig. 7(a). Paired photons are generated with cold Rb atoms using the method 

of Balic et al. We apply strong counterpropagating pump and coupling lasers (not shown) 

to produce phase matched counter-propagating pairs of time-energy entangled Stokes and 

anti-Stokes photons. We use a 85Rb two-dimensional magneto-optic trap with an optical 

depth which can be varied between 10 to 60 to generate biphotons with temporal lengths 

between 50 and 900 ns. The inset in Fig. 8(a) shows the biphoton wavefunction obtained at 

an optical depth of 35 as directly measured using a TDC. Two features are of interest. First, 

the width of the wavefunction is determined by the slow group velocity of the anti-Stokes 

photon and varies linearly with the optical depth. Second, the distinctive sharp feature at 

the leading edge is a Sommerfield-Brillouin precursor that ensures that the earliest signal 

reaches a detector at the speed of light in vacuum. 
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Figure 8: (color online) Modulation of the biphoton correlation function, (a) m\(t) = 1 and 
m,2(t) = cos(u>t + if). The inset in (a) shows the correlation function with both modulators 
open, (b) mi(t) = m2(i) = cos(ujt + <f). Here LO = 2irx 35 xlO6. 

The generated Stokes and anti-Stokes photons are transmitted through 10 GHz electro- 

optic amplitude modulators (Eospace Inc.) with a half-wave voltage, V„ of 1.3V. To obtain 

a perfectly sinusoidal output, the modulators are biased at maximum transmission and the 

input voltage is varied linearly using a triangular waveform that varies between —Vn and +Vn. 

This waveform is generated by a fast function generator (Tektronics AFG3252) with two 

output channels whose frequencies and phases can be varied independently. The modulated 

photons are then sent to SPCMs (Perkin Elmer SPCM-AQR-13), which are connected to the 

start and stop inputs of a TDC (Fast-Comtec TDC 7886S). Coincidence counts are binned 

into histograms and plotted as a function of the time difference between the detection of a 

Stokes and an anti-Stokes photon. 

In Fig. 8 (color online) we demonstrate the modulation of a biphoton wavefunction. The 

data are recoded by binning coincidence counts versus time into 1 ns bins. In Fig. 8(a), the 

Stokes modulator is turned off and is biased at maximum transmission; and the anti-Stokes 

modulator is driven at 35 MHz. In agreement with theory, the biphoton wavefunction is not 

modulated. In Fig. 8(b), both modulators are modulated at 35 MHz with the same, but ar- 

bitrary, phase. The correlation function is now modulated at twice the applied frequency, i.e. 
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at 70 MHz. When driven by non-sinusoidal waveforms, the correlation function is modulated 

by the cross-correlation of the two modulating signals. In agreement with Eq. (5.2), we have 

verified that when the two modulating signals are square waves with the same frequency, the 

correlation function is modulated by a triangular function. 
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Figure 9: Fourier Transform measurement technique at an optical depth of 15(Left) and 
35(Right). Upper: Frequency domain data, Lower: Fourier Cosine transforms (red) of 
corresponding frequency domain data, and real-time fast direct temporal correlation data 
(blue). The term modulation frequency on the x-axis of (a) and (c) refers to the applied 
frequency. The observed modulation frequency [Eq. (5.4)] is a factor of 2 higher. 

We next demonstrate the Fourier measurement technique. A 35 m long polarization- 

maintaining fiber is used to delay the anti-Stokes photon by 175 ns in the experiment. The 

modulators are driven synchronously at frequencies between 0 and 30 MHz. To simulate 

slow detectors, we bin coincidences into 1 /xs bins, and since the temporal extent of the 

waveform is less than 1 //s, the entire biphoton is contained within the first time bin. From 

the Fourier transform property that delay in the time domain corresponds to oscillation in 

the frequency domain, the plot of coincidence counts versus modulation frequency shows 

ripples with a frequency (5.7 MHz) equal to the inverse of the time delay.   We show two 
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data sets in Fig. 9 for optical depth of 15 (left) and 35 (right), for relatively short and 

long biphoton wave packets, respectively. In Figs. 9(b) and (d), we compare the biphoton 

wavefunction as directly measured with 1 ns bins (blue line) to the Fourier cosine transform 

of the traces in Figs. 9(a) and (c), (red line), vertically scaled to match the peak value. We 

find reasonable agreement between the two methods. We note that the sharp spike in the 

temporal trace near t — 0 results from the DC component in the frequency domain trace. 

We have shown how biphotons may be modulated, and how this modulation may be used 

to measure the magnitude of the biphoton wavefunction. Though we have used long bipho- 

tons and low modulation frequencies, we believe that this technique should be extendable 

to short biphotons. A commercially available telecommunication modulator driven at a fre- 

quency of 60 GHz and therefore modulating at 120 GHz will allow measurement of biphotons 

with a minimum length of about 8 picoseconds. This is about a factor of five faster than 

state-of-the-art commercial SPCMs. If the comparison is made on the basis of state-of-the- 

art polymer light modulators operating at 200 GHz and therefore modulating at 400 GHz, 

then the Fourier technique, will allow measurement down to about 2.5 ps. This is about 

eight times faster than the fastest reported superconducting detector. Looking further to 

the future, all-optical light modulators have been demonstrated at frequencies greater than 

1 THz; thereby in principle allowing measurement of photons on femtosecond time scales. 

We note that an advantage of the Fourier technique as compared to either sum frequency 

correlation or Hong-Ou-Mandel interference is that the signal and idler photons may be cor- 

related at distant detectors and do not need to be brought together at a summing crystal or 

at a beam splitter. 

For more details please see: Chinrnay Belthangady, Shengwang Du, Chih-Sung Chuu, G.Y. 

Yin, and S.E. Harris, "Modulation and measurement of time-energy entangled photons", 

Phys. Rev. A, Rapid Communications, 80, 031803 (September 2009). 
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6    Resonator Sum Frequency Generation with Time- 
Energy Entangled Photons 

We recently developed a technique for enhancing the quantum component of sum frequency 

radiation that is obtained by summing pairs of signal and idler photons. By resonating the 

sum frequency we observe generation that varies linearly with input power and is increased 

by a factor of twelve. The essence of the technique is similar to the Purcell effect where the 

work done by a generated dipole moment, in this case monochromatic, against an electric 

field at its own frequency is increased by the presence of the resonator. Of importance, 

this resonance enhancement occurs pair by pair, thus resulting in the linear dependence of 

generated sum power on the incident biphoton rate. 

The technique of resonant enhancement is shown in Fig. 10. Time-energy entangled 

photons termed as the signal and idler are generated by a parametric down-converter (not 

shown) with a monochromatic pump so that the pump frequency up equals the sum of the 

signal and idler frequencies. These photons are summed in a nonlinear crystal placed inside 

a one-sided cavity whose qth longitudinal mode at frequency uq is detuned from the pump 

frequency by 5uiq = UJP — ujq. 

Rl=1 R2=R 
Biphoton 

pump 

asdi Or 

SFG 
crystal 

LI 
a sum 

Figure 10: Resonant enhancement technique. 

The SFG rate consists of two terms, a term due to quantum SFG, and a term due to 

classical SFG. It can be shown that the quantum term is monochromatic and varies linearly 

with input power, while the classical term has a lineshape equal to the convolution of the 

signal and idler spectra and varies quadratically with input power. Similarly, the SFG rate of 

the traveling wave case (without cavity) also consists of a quantum term that varies linearly 

with input power and a classical term that varies quadratically. 
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The quantum SFG rate is enhanced by the presence of the cavity by an amount equal to 

the ratio of the quantum terms for the two cases. When the cavity is tuned to resonate the 

pump frequency (Suq = 0), the enhancement is 

•    , ,. 4(1 -R) 
cavity/traveling =       _ 

The largest quantum SFG enhancement is obtained for R = 1 — 2£; for this reflectivity the 

enhancement ratio is equal to the inverse of the round trip power loss, l/(2£). 

Of importance, assuming that the signal and idler bandwidths are large as compared to 

the cavity free spectral range A, enhancement by the use of a resonant cavity is only possible 

in the quantum and not in the classical regime. By using the resonance technique described 

here, both the quantum SFG rate and the ratio of the quantum to classical term may be 

improved. Our proof-of-principal-experiment configuration is shown in Fig. 11. Frequency- 

Beam 
dump 

Pump 
532nm 

Down-converting 
crystal 

SPCM 

Cavity enhanced SFG 

Figure 11: Schematic of experiment. 

degenerate biphotons, with a calculated bandwidth of 32 nm, are generated by spontaneous 

parametric down-conversion in a 20 mm long periodically-poled, magnesium oxide-doped, 

stoichiometric lithium tantalate crystal (MgO:PPSLT) pumped by an 8 W, CW laser at 532 

nm. A four-prism setup is used to filter out the strong pump and to provide dispersion 

compensation for the down-converted biphotons. SFG of these biphotons occurs inside a 

cavity that is reflecting at 532 nm and transparent at 1064 nm. 

The SFG crystal is a 20 mm long MgO:PPSLT crystal anti-reflection coated at 1064 nm 

and 532 nm. The confocal cavity consists of two 20 mm radius of curvature spherical mirrors, 

one of which is mounted onto a piezoelectric crystal. The input mirror has a reflectance of 

Rin > 99.5%, and the output mirror has a reflectance of Rout = 95.5%.   (The measured 
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single-pass crystal loss is £ ~ 2%, and the optimum reflectivity of the output mirror is 

Rout = 1 — 2£ ~ 96%). The SFG signal is filtered, then collected into multimode fiber and 

detected with a single photon counting module. 

A typical scan of the cavity over a free spectral range is shown in Fig. 12(A). The resonant 

behavior of the SFG process is clearly observed, with peak generation rates on resonance 

that are significantly higher than the traveling wave rate of 3200 counts/s. While the cavity 

is passively stabilized to within a fraction of a free spectral range during the scan period, 

temperature instability and air currents cause the peak measured SFG rate to fluctuate by 

an amount that is 6 times larger than the shot noise. 

To better quantify the enhancement, we measure the resonantly-enhanced SFG rate at 

various down-converted infrared (IR) input powers. Figure 12(B) shows the averages and 

standard deviations of the peak SFG rates at each input power. Also shown is the traveling- 

wave SFG rate obtained by removing the out-coupling mirror. The linear fits to the data in 

Fig. 12(B) demonstrate two results. First, the ratio of their slopes gives the SFG enhance- 

ment ratio of 12. Second, the linear dependence of the SFG rate on input power, in both 

cases, shows that it is the quantum SFG term that is enhanced. The enhancement is a factor 

of two less than the theoretical prediction. The discrepancy may be due to imperfect mode 

matching or cavity instability. 

In addition to demonstrating the effect experimentally, we have also developed a theory 

for resonantly-enhanced quantum SFG. We work in the Heisenberg picture with traveling 

wave signal and idler beams denoted by the annihilation operators aa(t, z) = 

aa(t, z) exp [—i(cuat — ksz)] and at(t, z) = 2j(i, z) exp \—i(u>it — ktz)}, where operators with a 

tilde vary slowly with time and distance. We use a slowly varying envelope formalism with 

the standing-wave cavity mode operator written as aq(t, z) = aq(t) exp(—iu>qt) sin(kqz), where 

kq — qir/L. We project the broadband generated dipole moment operator, proportional to 

aa(t,z)a,i(t,z), against the cavity mode. With the traveling wave SFG field emitted from 

mode q denoted by asum(t, z) = asum(t) exp [—i(u>pt — kpz)], the equation for the evolution 

of aq(t) and its relation to the SFG field is: 
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Figure 12: (A) The cavity is scanned over a free spectral range, thereby demonstrating 
the SFG resonance effect. The pink solid line is the theoretical plot of the quantum term 
normalized to the average peak rate. Blue circles are experimental data. (B) SFG rate for 
cavity and traveling wave experiments. Circles are resonant SFG rates averaged over 20-25 
peaks obtained in slow cavity scans. Squares are traveling-wave SFG rates averaged over 
60-second intervals. 
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^> + T-aq{t) = Pq(t) exP(-i5u;t) + F(t) 

Pq(t) = IKC— I   as(t, z)a,i(t, z) exp(ikpz) sin ( —— j dz 

aSUm{t) = v/7 aq(t). (6.1) 

Denoting the spacing of the cavity modes at the sum frequency by A = c/(2Ln), the decay 

rate T of photons in the cavity is determined by the mirror reflectivity R and the single pass 

power loss £. With the output coupling rate 7 = A(l — R), the total (power) decay rate is 

T = 2£ A + 7. We take all fields to be plane waves with cross sectional area A and take the 

refractive index n and nonlinearity d to be independent of frequency. With the cavity and 

summing crystal of the same length, the coupling constant KC = (d/n2)(^0hwpu;suJiL/A)1^. 

The quantity T(t) is a Langevin noise operator that has contributions from an incoming 

wave at the right hand mirror (not shown) and a macroscopic loss term. Both are negligible 

at room temperature. The normalization is such that {aq(t)aq(t)) is the total number of 

photons in the cavity mode, and (alum(t)asum(t)) is the rate of sum photons exiting the 

cavity. 

The solution of Eqs. (1) for the SFG field operator is 

dSum(t)   =   ^exp(--tj j   exp(-Apq{t')exp{-i5ujt')dt'. (6.2) 

We assume that the signal and idler fields are not depleted in the summing crystal and 

transform to the frequency domain using as(t, z) = fas(uj, z)exp(—icut)du! and ai(t,z) = 

J a,i(oj,z)exp{—iujt)duj. Pq{t) becomes 

/oo     poo 

I       $(LUUL02)as(Ui)ai(LU2) 
-00 J — 00 

x exp [- 

§(u)i,ijj2) = exp 

x exp [—i{u)\ + u>2 — uJp)t\ du)\du)2 

Ak{ujuuj2)L .Ak(uji,u2)L 
—1  sine 

(6.3) 
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where $(U>I,(JJ2) is a phase matching factor with sinc(:r) = sin(x)/x and Ak(uii,uj2) — kq — 

[k(u}\) + k(u)2)]. Equation (6.3) is substituted into Eq. (6.2) to obtain the SFG output field: 

r(t) 

/oo     re 

I 
•oc J — < 

^]§(ui,L02)as{u\)ai(L02) 

T/2 — i{u\ + u>2 — Up + 8UJ) 

x exp [—i(u>i + LO2 — L0P + 6u)t] duj\du>2- (6.4) 

For monochromatically-pumped down conversion, the down-converted signal and idler 

fields at the input of the summing crystal, as(u>) and a^u'), where u' = UJP — OJ, can be 

described in terms of initial vacuum fields aso(w) and dio(ui') as 

as(cu)   =   A(co)as0{u;) + B(co)al0(u>') 

a\{J)   =   C(uj)as0{uj) + D(u;)al0{uj'). (6.5) 

Substituting Eqs. (6.5) into Eq. (6.4) and noting the commutator [ajo(u>i),aj0(u;2)] = 

(1/2TT)S1J5(UJI — UJ2), we evaluate {a\um{t)asum(t)) and find the rate of SFG photons in mode 

q exiting the cavity to be 

n. - (?)'£ 1 
r2 + ASd2 /H + 7 

r2 + 4(w - uqy 9{u) dw. 

where f(ui) and g{ui) are 

(6.6) 

/(")   = 
/oo 

A(tt)c*(tt)$(n,ujp-tt)dn 
•00 X 

" X 

8{ui — ujp) 

/oo 

|5(Q)|2 |c(fi - u + wp)|
2 |$(n,o; - n)\2da (6.7) 

•oo 

The SFG rate in Eq. (6.6) consists of a quantum term containing the function f(u) and a 

classical term containing the function g(u) . The quantum term is the result of generation 

with correlated photons; it may be shown to scale linearly with input power and has a 

monochomatic spectrum.   The classical term comes from SFG with uncorrelated photons 
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and varies quadratically with input power. Its spectrum is proportional to the convolution 

of the signal and idler spectra, multiplied by the cavity lineshape. 

In order to normalize the improvement that results from the use of a cavity, we write the 

SFG rate for the traveling wave case with no cavity present. This rate is 

7^=(^J   /     [f(u>) + g(u>)]du,, (6.8) 

where K,tw = KC/A
1//2

, and kq in the function <&(LJI,U2) becomes k{uj\ +u>2)- As in the cavity 

case, the SFG rate consists of a quantum term that varies linearly with input power and a 

classical term that varies quadratically. 

The quantum SFG rate is enhanced by the presence of the cavity by an amount equal to 

the ratio of the terms containing f(u)) in Eqs. (6.6) and (6.8). When the cavity is tuned to 

resonate the pump frequency (5u — 0), the quantum SFG enhancement ratio is 

4(1 -R) ,     x 
Vo = T —?>• 6.9 

Maximizing with respect to R, the largest quantum SFG enhancement is obtained for R = 

1 — 2£; for this reflectivity the enhancement ratio is equal to the inverse of the round trip 

power loss, l/(2£). 

To study the effect of the cavity on the classical component of SFG, we assume that 

the signal and idler spectra are sufficiently broadband that the dipole moment at the sum 

frequency is constant over many cavity modes. In this case, g(u>) is a constant, and the 

generated SFG spectrum is periodic with resonant peaks separated from each other by the 

cavity free spectral range. To obtain the net enhancement of the classical term, we integrate 

over a single free spectral range centered at uiq. The resulting classical SFG enhancement 

ratio is then 

_ 2  p+7rA J   ^ 7 -R 
Vc —      I 

"    Ju)a—1T 
d"-±=M 5V-^7> (6-10) 

A   T* + 4(u;-ujq)
2 T      (l-R) + 2^ 
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where the second equality follows for sufficiently high finesse that Tan_1(27rA/r) —• ir/2. 

If the cavity is lossless, r\c = 1. Though generation at resonance is enhanced, generation 

off-resonance is suppressed so that the integrated classical SFG enhancement ratio is unity. 

Equations (6.9) and (6.10) show how resonating the SFG field enhances the efficiency of 

quantum SFG while leaving classical SFG unchanged. The enhancement of quantum SFG 

may find use in correlation experiments that measure the lengths of biphoton wavefunctions 

which are too short to be measured with time-resolved detectors. In such experiments, the 

SFG crystal must be very short to have a sufficiently large acceptance bandwidth for the 

biphotons, and the SFG signal may be small as a result. A resonator could enhance the 

signal to measurable levels. 

7    Observation of Nonlocal Modulation with Entangled 
Photons 

The idea of what we term here as nonlocal modulation was published about one year ago; 

i.e., S. E. Harris, "Nonlocal Modulation of Entangled Photons," Phys. Rev. A 78, 021807(R) 

(2008). This section of the report describes the first experimental observation of this effect. 

When the photons of a time-energy entangled pair are sent through different channels 

having arbitrary dispersions, the dispersion in one channel may be negated by dispersion of 

the opposite sign in the other channel. This effect results from a quantum mechanical inter- 

ference and has no classical analog. This is now termed as nonlocal dispersion compensation. 

We report the first observation of a time-frequency analog to nonlocal dispersion cancella- 

tion and term this effect as nonlocal modulation. Consider a simplified concept system as 

shown in left portion of Fig. 13, where a monochromatic pump generates non-degenerate 

time-energy entangled photon pairs. The signal and idler photons (Channels 1 and 2) pass 

through sinusoidal phase modulators. These modulators are driven at the same modulation 
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frequency, and their relative phase may be varied. After passing through the modulators, 

the signal and idler photons are dispersed, for example, by a prism, and the relative po- 

sitions (frequencies) of the signal and idler photons are correlated. When the modulation 

frequency is small as compared to the spectral bandwidth of the signal or idler, we find a 

consequence of time-energy entanglement that we term as nonlocal modulation. Specifically, 

these distant modulators act cumulatively to determine the apparent modulation depth. If 

the two identical modulators have opposite phase, they negate each other and act as if nei- 

ther modulator were present. Conversely, if operated with the same phase, they produce the 

same correlation as does a single modulator with twice the modulation depth acting on only 

one of the photons. 

Channel 1 

Channel 2 

Figure 13: Nonlocal modulation. Signal and idler photons are phase modulated at the same 
frequency and with controllable phase. The signal and idler beams are frequency-dispersed, 
and the positions (frequencies) of the detected photons on the photodetectors are correlated. 
Left: simplified concept diagram. Right: experimental configuration. 

If the resolution of the frequency correlator of Fig. 13 (left) is infinite, the resulting 

correlation traces for phased and anti-phased modulators may look something like Fig. 14. 

Since the pump laser which generates the entangled photons is monochromatic, they are 

delta-function correlated in frequency before any modulation occurs. The modulators act 

on this delta function correlation by generating sidebands whose distribution depends on 

the amplitude of the sinusoidal driving signal. If the modulators are run in phase with 

each other, the distribution of sidebands resembles that of a single modulator with twice 
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Figure 14: Example frequency correlation function with (a) phased and (b) anti-phased 
sinusoidal modulators. Because the modulators have the same amplitude, cumulative mod- 
ulation results in either (a) doubling of modulation depth or (b) cancellation of modulation 
in the spectral correlation. 

the driving amplitude [Fig. 14(a)]. If run with opposite phase, the modulators cancel each 

other, and a single delta function is present in the correlation, as if neither modulator were 

present [Fig. 14(b)]. 

The more detailed experimental configuration is shown in right part of Fig. 13. We 

pump a 20 mm long, periodically-poled, magnesium oxide-doped stoichiometric lithium tan- 

talate crystal (PPSLT) with 0.8 W from a 532 nm cw laser. The nonlinear crystal is phase 

matched to produce 32 nm bandwidth, degenerate photon pairs at 1064 nm. All fields are 

polarized along the extraordinary axis of the crystal. The generated photons are filtered 

from the strong 532 nm pumping beam using a four-prism setup and are then coupled into a 

polarization-maintaining fused-fiber beam splitter which diverts the photons into Channels 

1 and 2 with equal probability. The photons are passed through identical sinusoidal phase 

modulators (EOSPACE) which are driven at 30 GHz with modulation depths of about 1.5 

radians. The relative phase between the modulators is controlled using a calibrated phase 

trimmer. The photons then pass through identical monochromators, each having a linear 

dispersion of 210 GHz/mm and a Gaussian instrument response function with a FWHM of 

8.5 GHz. To obtain frequency domain correlation curves, we fix the output slit in Channel 

1 at X\ and scan the position x<i in Channel 2. The photons that are transmitted through 
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the monochromator slits are coupled into multimode fibers and detected with time-resolved 

single photon counting modules (SPCMs, id Quantique id400 and PerkinElmer SPCM-AQR- 

16-FC). 

The primary experimental results of this work are shown in Fig. 15. For each case, we set 

the monochromator slit in Channel 1 at an arbitrary position x\ that is near the center of 

the generated 32 nm spectrum and leave the position of this slit fixed thereafter. The slit in 

Channel 2 is scanned over positions X2, and the coincidence rate of the two detectors (with 

gate width T = 1.25 ns) is recorded as a function of this position. For each position, the 

rate is averaged for 20 s. 

With the pump frequency defined as up, and the position x? proportional to the frequency 

o^2, we express the coincidence rate as a function of relative frequency A = u>2 — (UJP — ui\). 

The scale of the frequency axis is calibrated by measuring the sideband spacing of a single- 

mode 1064 nm laser modulated at 30 GHz, with the zero position chosen (at the start of the 

experiment) as the location of the correlation peak for unmodulated photon pairs. 

The upper portion of Fig. 15 shows the experimental results without modulation and 

with modulation in a single channel. In Fig. 15(a) (upper), both modulators are turned 

off by disconnecting their 30 GHz drive signals. As expected by energy conservation, a 

single correlation peak is observed. In Fig. 15(b) (upper), Channel 1 is phase modulated 

as exp[iSsm(u>mt)] with a modulation depth of 6 = 1.5, and Channel 2 is not modulated. 

The frequency correlation is now distributed over a set of sidebands, having Bessel function 

amplitudes J%(5), whose total area is equal to that of upper (a) of Fig. 15. 

In Fig. 15(a) (lower), both modulators are turned on at a modulation depth of 8 = 1.5, and 

the cable length is adjusted so that they have the same phase. They now act cumulatively 

(constructively interfere) to produce a set of sidebands having a Bessel function distribution 

J^(2S). The frequency-domain correlation function of two distant modulators is therefore 

the same as that which would be obtained by correlating an unmodulated photon with a 

photon modulated at twice the modulation depth. 

In Fig. 15(b) (lower), the modulators are run at the same depth as in the previous para- 

graph, but now the relative cable length is adjusted so that the modulators are run in phase 

opposition. The modulators now destructively interfere, and no sidebands are visible. 
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Figure 15: Frequency correlation measurements. The horizontal axes measure relative fre- 
quency changes as slit position x-i is scanned. Upper: (a) both modulators turned off and 
(b) the modulator in Channel 1 running at a modulation depth of 1.5. Lower: both modu- 
lators running (a) with the same phase and (b) with opposite phase. The modulation depth 
for both modulators is 1.5. Circles are data; curves are theoretical fits (see text). 

The striking difference between Figs. 14 and 15 is that the sidebands are not delta func- 

tions but have widths determined by the resolution of the frequency correlator in Fig. 13 

(right). We have developed a theory to predict the measured correlation functions with 

finite-resolution monochromators as used in our experiment. The following describes this 

theory, which is used to produce the solid curves in Fig. 15. 

Working in the Heisenberg picture, a nonlinear crystal of length L is pumped by a 

monochromatic laser at frequency up. A positive-frequency field operator a(u, z), represent- 

ing entangled photons, evolves inside the crystal and may be written in terms of an envelope 

b(ui, z) which varies slowly along the propagation direction: a(cu,z) — b(cu, z) exp[ik(u>)z\. 

The propagation equations describing entangled photon generation are 
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db(u,Z) .     .     ,,+ . , r.A . /     \    1 
—    =   iK,{uj)b] {UJP — u, z) exp [IAK(UJ)Z\, 

oz 
dtf(ui,z^ 

=   —iK*(u;)b(u}p — uf,z)exp[—iAk(uj)z]. (7.1) 

where K(LU) and Ak(u) are the coupling factor and wave-vector mismatch, respectively. The 

solution for the output field at z = L, expressed in terms of the vacuum field avac(u) at the 

input of the crystal, is 

Oout(w) = A{hj)avaic(uj) + B^alzciujp - w), (7.2) 

where, to preserve the commutation relations, the functions A(u) and B(LO) satisfy |.4(o;)|2 — 

\B(UJ)\
2
 = 1 and A(LO)B(UJP - to) = B(ui)A(u;p - UJ). 

The time-domain output field operator is related to its frequency-domain counterpart 

[Eq. (7.2)] by the inverse Fourier transform, aout(t) = f•aout(w)exp(—iut)(Lj, and is nor- 

malized so that the total rate of generated photons exiting the crystal is i?out = (aoUt(7j)aout(TJ)). 

The generated photons are separated into two channels, denoted as Channel 1 and Chan- 

nel 2, using a 50/50 beam splitter. The field operators at the outputs of the beam splitter 

are a\(t) = a^t) = -j^aout(t). The photons are modulated by periodic phase modula- 

tors whose time-domain, Fourier-series transfer functions are m\(t) = £^fc qk exp(—ikujmt) in 

Channel 1 and m2(£) = J2iriexP(~i^mt) m Channel 2, with Fourier transforms mi(w) = 

"52kqic8(u) — ku)m) and 7712(0;) = 'Ylir${ljJ ~ l^m), respectively. With the * symbol denot- 

ing convolution, the frequency-domain modulated fields are a\(u>) — ai(co) * mi(«) and 

a2(o;) = 02(0;) * 7712(0;). Substituting ai(o;), a2(o;), mi(w), and m2(o;) into the expressions 

for a,i(u>) and 02(0;) yields 

1      00 

fii(o;)   =    —= ^^ qk[A{uj - ku^a^du - kum) 
fc=—00 

+ B{u - fco;m)4ac(o;p - u + ku>m)], 

02(0;)   =    —7= 2J rl [M^ ~ /o;m)avac(o; - lu>m) 
/=—00 

+ B(UJ - lum)alac(u!p -u> + lujm)]. 

(7.3) 
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The modulated photons are frequency correlated by passing each through identical monochro- 

mators whose output slits may be translated to select frequencies oj\ = f3x\ in Chan- 

nel 1 and Li!2 = 0X2 in Channel 2, where the constant (5 is the linear dispersion of the 

grating systems. The monochromators (spectral filters) have field transmission functions 

H\(u> — (3xi) and H2(w — /3x2). The filtered field operators in Channels 1 and 2 are 

aif(uj,xi) = a\{uj)H\{uj — (3x{) and a2f((j,x2) = a2(uj)H2{oJ — Px2), respectively The count 

rates at the outputs of the monochromators are given by Ri(xi) = (a\f(t, xx)aif(t, X\)) and 

^2(^2) = (a2[{t,X2)a2{(t,X2))- These rates are 

1   _°°.       r°° 
Ri(xi) = — y^kfcl2/ \B{UJ- kujm)\2 \Hx{u - (3xx)\

2duj, 

00 

#2(^2) =    -^ Y>,|2 / \B(LO - lum)\2 \H2(u - f3x2)\
2du. (7.4) • h p4 

/=—00 

Assuming a gate width T, the coincidence rate for the two detectors is related to the 

second-order Glauber correlation function G^2\t\,x\,t2,x2) = 

{a\i(t2,X2)a\i(t\,Xi)a\i(ti,Xi)a2[(t2,x2)). With the assumption that the resolution of the 

monochromators is high, or equivalently that the filter widths are small (as compared to the 

modulation frequency u>m), it can be shown that the correlation function depends only on 

the difference of the arrival times r = t2 — t\, and the coincidence rate is 

,T/2 
Rc(xux2)= G{2){T,xux2)dT. (7.5) 

J-T/2 

Equation (7.5) may be expanded using Wick's theorem and shown to be given by 

^2qkrn-kFk(T,xi,x2) 

2 

dr, (7.6) 
fc=—00 

Rc(xux2) = R1(xl)R2{x2)T + I 
J -c 

where A = (3{x\ + x2) — u>p, n = [A/u>m + |J, and 

1   r°° 7k(r,Xi,X2) = — / A(LO - ku)m)B(up - w + ku>m) 

x H\(ui — f3x\)H2{ojp — tu — (5x2 + nLOm)exp(iuiT)dD. (7.7) 
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The first term in Eq. (7.6) is the result of accidental coincidences between unpaired pho- 

tons in a gate width T. The second term is the coincidence rate between paired photons 

and captures the modulation effects described in this section. To obtain Eqs. (7.4)-(7.7), we 

have assumed that the transmission widths of the monochromators are small as compared to 

the modulation frequency and large as compared to the inverse of the temporal gate width 

T. In our experiment these assumptions are satisfied by factors of 3.5 and 11, respectively. 

If we further assume that A(u>) and B(uip — u>) are constant in the vicinity (±150 GHz in 

Fig. 15) of u) = (3x\ and are equal to A0 and B0, respectively, then Eq. (7.6) becomes 

RC(A) = R1R2T + cnH^(num - A), (7.8) 

where H•(u) = |//i(w)|2 * \H2(UJ)\
2
, and 

1 f°° 
Ri   =   -H£0|

2 /     l#iMI2(^> (7-8a) 47r J-oc 
1 f°° 

#2   =    4^l5o|2/     \H2(iu)\2dLU, (7.8b) 

Cn      — 
1 

8^ 
A0B0 22   QkTn-k (7.8c) 

The solid curves in Fig. 15 are theoretical fits to the data using Eq. (7.8) shifted horizon- 

tally so as to match center. The Fourier series coefficients for sinusoidal phase modulators 

are Bessel functions with q^ = Jk(-Si) and r; = J;(—S2), where 8\ and 62 are the modu- 

lation depths in Channels 1 and 2, respectively (|^i| = \82\ = 1.5 in our experiment). We 

model the monochromator response functions in Channels 1 and 2 as Gaussians with FWHM 

bandwidths T: H^u) = ax exp [-21n(2)o;2/r2] and H2{LU) = a2exp [-21n(2)a;2/r2]. (The 

monochromator in Channel 1 is the mirror image of the one in Channel 2 which has a mea- 

sured FWHM bandwidth of 8.5 GHz.) The transfer functions include fitting parameters cti 

and a2 used in Fig. 15 to account for transmission losses and the difference in detection 

efficiencies of the photon counters. 
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To obtain the constants AQ and Bo, for each case in Fig. 15, we measure the average 

value of i?2 and use Eq. (7.8b) to calculate |50|. We obtain \AQ\ from the commutator- 

preserving condition |A)|2 — |i?o|2 = 1- For all curves, the fitting parameters are taken as 

a\ = 1.20 x 10~2 and a| = 5.59 x 1CT4. These values are in good agreement with loss 

measurements and estimates of the photon counter detection efficiency, where we note that 

the id400 detector in Channel 1 has a detection efficiency an order of magnitude larger than 

the SPCM-AQR-16-FC detector in Channel 2. 

8    Chirp and Compress with Biphotons 

Background 

When the bandwidth of an optical pulse is equal to, or greater than, its central frequency 

and when all of its spectral components are in phase, the pulse develops a characteristic 

waveform that is termed as single cycle. A chirped, quasi phase matched nonlinear crystal 

is a technique for generating nonclassical pairs of photons (biphotons) whose characteristic 

coincidence time, as measured at distant detectors, is a single optical cycle. The elements of 

the technique are (1) the suggestion for using parametric down conversion to spontaneously 

generate pairs of entangled photons whose instantaneous frequencies are chirped in opposite 

directions, and (2) the use of the nonlocal nature of entangled photons to allow the dispersion, 

as experienced by one photon, to cancel out the dispersion of the second photon and to 

compress the biphoton wave packet. 

A key motivation for the study of single-cycle biphotons is their potential application to 

nonlinear optical processes with nonclassical fields. One example is the use of sum frequency 

generation (SFG) as an ultrafast correlator of biphotons. The efficiency for generating sum 
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frequency photons varies inversely with the width of the incoming biphoton; i.e., single-cycle 

biphotons behave as if they have an effective power equal to their energy divided by their 

temporal width. Similarly, in the absence of intermediate resonances, single-cycle biphotons 

maximize the two photon transition probability. Other uses for ultra-wideband biphotons 

include nonclassical metrology and large bandwidth quantum information processing. 

CO 

! 

CO 

CO: 

Figure 16: Chirped-poled nonlinear crystal. Arrows indicate the sign of the nonlinear coef- 
ficient. 

As shown in Fig. 16, we make use of a quasi-phasematched (QPM) periodically poled 

crystal. The up-down arrows show the sign of the nonlinear coefficient in each domain of 

the crystal. These domains are reversed with a period such that the corresponding spatial 

frequency, 27r/A, is linearly chirped. The poling period is chosen so that the signal frequency 

is phase matched for red emission at the left end of the crystal and for blue emission at the 

right end of the crystal. Paired photons that are emitted from the right end arrive at their 

respective photodetectors at the same time. Paired photons that are emitted from the left 

end of the crystal arrive at the photodetector with a time difference determined by their 

group velocities. In the ideal case where there is no group velocity dispersion, the biphoton 

wave packet is (exactly) linearly chirped. Figure 17 shows the near-white light spectrum of 

a 2 cm long QPM crystal of LiNb03 pumped with a monochromatic laser at a wavelength of 

0.420 fim. Here, the spatial frequency of the domain reversals varies linearly with distance 

and is chosen so that the crystal is phase matched at a signal wavelength of 0.750 /xm at the 

left end and 0.464 /xm at the right end. This corresponds to a poling period of 3.11 /xm at 

the left end and 7.02 /xm at the right end of the crystal. When compressed, this spectrum 

corresponds to a biphoton with a temporal length that is nearly a single optical cycle at the 

degenerate wavelength of 0.840 /xm. The refractive index as a function of frequency, for this 

figure, is ne(cu) and is obtained from the Sellmeier equation for e-polarized light in LiNbC>3. 
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Figure 17: Calculated spectrum of spontaneously generated chirped photons for a 2 cm long 
QPM crystal of LiNb03 pumped at 0.420 //m. 

Theoretical Work 

We have developed a strong understanding of the physics of nonlinear optics with biphotons, 

specifically sum frequency generation, and now have a well-understood theory to solve other 

linear and nonlinear quantum optical processes using down-converted photons. We have 

developed equations and numerical codes which allow us to simulate down conversion in 

periodically- and chirped-poled nonlinear crystals. Of particular importance are codes which 

simulate biphoton generation in poled crystals with arbitrary domain patterns, leading to 

new ideas for obtaining very short biphotons (e.g. using a nonlinearly-chirped crystal to 

compensate for dispersion). Our numerical tools also demonstrate the effects of the rather 

large (and unavoidable) poling errors present in real crystals and have lead to a particularly 

interesting discovery that the chirp/compress strategy for generating single-cycle biphotons 

is very robust to these errors. As an example showing the usefulness of our code, we apply 

it to an experiment in progress. We are currently setting up an ultrafast correlator to 

measure the width of a modestly-chirped biphoton. We are using a chirped-poled crystal 

from HC Photonics which has a linear k-vector chirp. The crystal is magnesium oxide-doped 

stoichiometric lithium tantalate (MgO:SLT), with a poling period which varies from 8.0481 

to 8.0223 fim over its 2 cm length from input to output. Our numerical code computes the 

theoretical biphoton wavefunction generated by the crystal, as shown in Fig. 18. 
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Figure 18: Numerical simulation computing the output of a chirped nonlinear crystal (2 cm 
long MgO:SLT). Calculated spectrum of the signal (left) and idler (right) photons. 

As a check to our theory, we have measured the spectra of the signal and idler photons 

generated by the MgO:SLT crystal, shown in Fig. 19. The measurements were made with a 

Jarrell Ash MonoSpec 27 CCD spectrograph. The bandwidth appears to be accurate, and 

some of the features (e.g. lobes) predicted by the numerical code can be seen in the spectra. 
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Figure 19: Measured spectra of the signal and idler photons generated by a chirped nonlinear 
crystal (2 cm long MgO:SLT). 

To measure the correlation function for the biphotons generated in the chirped crystal, 

we plan to use a 1 mm LiNbOs crystal to generate 532 nm SFG from the biphotons as we 

vary the delay between them (more details will be discussed in the experimental section). 
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The numerical code also predicts the SFG correlation curves for such an experiment, which 

are shown in Fig. 20 for the chirped (left) and compressed (right) biphotons. The simulation 

which produced Figs. 18 and 20 did not include poling errors, but they are easily simulated 

with the same code. 
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Figure 20: Numerical calculation of expected SFG correlation measurement. Left: corre- 
lation function of the chirped biphoton. Right: correlation function for the biphoton after 
compression. 

In addition to the theoretical work directly related to our chirp and compress experiment, 

we have also studied other problems related to broadband biphotons. We have introduced a 

new form of spectroscopy, called Quantum Fourier Transform Spectroscopy (QFTS), which 

allows determination of the complex refractive index of an unknown material using a nar- 

rowband detector. The technique relies on sum frequency generation of biphotons and ho- 

modyning the coherent output with a local oscillator; it cannot be done with classical light 

sources. By working in the Heisenberg picture, our theory has made it especially straight- 

forward to simulate parametric down conversion in the high gain regime, allowing the same 

simple equations to be used to simulate nonlinear and quantum optics with the N-photon 

states generated in this regime. One interesting result of this analysis is that nonlocal can- 

cellation of dispersion (a property which allows biphotons to be compressed by acting on 

only one photon of the pair) is observable at classically high power levels. Our theory has 

also led us to predict Hong-Ou-Mandel interference with chirped biphotons.  In the case of 
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ideal linear chirps (no matter how large), the shortest possible HOM dip can be achieved 

with zero dispersion compensation. This makes broadband biphotons generated by chirped 

crystals attractive for experiments which utilize narrow HOM dips (such as quantum optical 

coherence tomography). 

Experimental Work 

Idler 

> 

Figure 21: Sum frequency generation correlator setup using a dichroic mirror to separate 
signal and idler photons. The biphoton is compressed in the signal channel, and the idler 
photon is delayed for correlation. 

We are currently in the process of setting up a proof-of-principle experiment to demon- 

strate the idea of chirping and subsequently compressing biphotons to achieve narrow cor- 

relation widths and increased efficiency of a nonlinear process. The basic correlation setup 

is shown in Fig. 21. The biphotons, incident from the left, separate into signal and idler 

photons at a dichroic beam splitter. The beam splitter is a long-pass edge filter (Semrock 

LP02-1064RS-25) with a very sharp transition edge that can be angle tuned to 1064 nm, the 

wavelength separating our photons (see Fig. 18). The idler photon passes through the filter 

and is retroreflected back through the filter. The retroreflector is mounted on an automated 

translation stage which can travel up to 24 mm in 10 nm steps (Newport VP-25XL), allowing 

high-resolution correlation traces. The signal photon is reflected from the filter and passes 

through a separate arm in the correlator. In the first phase of the experiment, this arm 

will simply return the photon to be overlapped with the delayed idler photon at the beam 
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splitter. In the second phase of the experiment, a compressor (custom chirped mirrors from 

Femtolasers) will be inserted in the signal beam path to compress the biphoton chirp. The 

recombined signal and (delayed) idler photon are focused into a 1 mm long periodically-poled 

MgO-doped LiNb03 crystal to generate 532 nm SFG. The SFG will be measured by a single 

photon counting module (PerkinElmer SPCM-AQR-16-FC) and recorded as a function of 

idler photon delay to measure the correlation function of the biphoton. When the two phases 

of the experiment are complete, we expect to see compression of the correlation width by a 

factor of 10, with a corresponding increase in SFG rate (as predicted by Fig. 20). 

9    Nonlinear Optics at X-Ray Wavelengths 

Our motivation for this work is the construction of the new LCLS (Linac Coherent Light 

Source) at Stanford. This source will use about 1/3 of the present SLAC accelerator and 

will produce FEL radiation at wavelengths as short as 1.5 Angstroms. The projected op- 

erating parameters for this light source are: average power= 1014 photons per second; 

pulse duration= 2 fs; photons per pulse=l.l x 1012; repetition rate =100 Hz; angular 

divergence=0.8 x 10~6 radians. Taken together these parameters should allow the first 

demonstration of new types of nonlinear x-ray effects. 

We anticipate LCLS experiments in the following areas: 1) The demonstration of second 

harmonic generation in its own right and for application to the measurement of the temporal 

structure of the LCLS femtosecond time scale laser pulses. As in the visible region of the 

spectrum these experiments will be done by splitting the x-ray beam and temporally delaying 

one portion relative to the other, thereby allowing the use of a slow detector. 2) The 

demonstration of mixing of a fs time scale visible laser with the LCLS beam. We have found 

that the conversion efficiency for this latter process is about four orders of magnitude larger 
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than for x-ray frequency doubling, and it is therefore likely that this effect will allow the 

development of practical correlation with a resolution of the shortest available Ti: Sapphire 

lasers. 3) Because this type of non-linear x-ray-visible process is dependent on the locations of 

the valence electrons it is possible that it can be developed into a method for the studying the 

shape of chemical bonds. 4) Experiments on parametric down conversion: These experiments 

would first be aimed at studying the basic process, for example the correlated count rate as 

a function of angle, position, and frequency. 5) More advanced experiments will be aimed 

at measuring the temporal length of the generated correlated biphotons. Of importance 

our calculations show that these photons are born with a length of less than 10-17 sec. It 

may therefore be surprising easy to generate photons allowing measurement of atomic scale 

distances. 6) It is likely that the LCLS will lead to a variety of experiments which make use 

of entanglement at x-ray wavelengths. These include studies of effects such as ghost imaging 

and Hong-Ou-Mandel beam splitter experiments on ultrashort x-ray correlation 

In the following we summarize our theoretical study and describe our proposed experi- 

ments. 

X-Ray Nonlinearites 

The central concept pointed out in the earlier papers of Freund and Levine (Phys. Rev. Lett. 

23, 854, 1969) and Eisenberger (Phys. Rev. Lett. 26, 684, 1971)is that, since X-ray photons 

have energies that are large as compared to the electron binding energy of light elements, but 

still small as compared to the electron rest mass, that the nonlinearity of an element such 

as diamond may be calculated by treating all of the electrons in the atom as free particles; 

and therefore representing the nonlinear medium as a very dense, (on order of 1024 electrons 

per cubic centimeter) cold plasma. Of most importance, the periodic lattice structure causes 

the plasma to be periodic. In a homogeneous plasma the projection of the nonlinear current 

density against the driving fields is zero and the effective second order nonlinearity is zero. 

The charge density of this effective plasma is determined by the reciprocal lattice k-vectors, 

weighted by the appropriate structure and form factors.   (Note that this is different from 
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conventional nonlinear optics in a periodically poled medium where the nonlinearity exists 

irrespective of the poling period.) 

The nonlinearity of this dense plasma is determined by, at first, seemingly different phys- 

ical processes. These are a) the Lorentz-force, b) convection, as determined by the spatial 

variation of velocity, and c) a current density caused by the spatial variation of the time- 

varying charge times the first order velocity. In recent work, we have shown that the plasma 

nonlinearity will satisfy detailed balance and the Manley Rowe relations. This is at first 

not-obvious; for example one may show that the Lorentz-force term, when taken separately 

from the other terms does not satisfy the Manley-Rowe relation and would not, in its own 

right produce correlated photons. But by taking the sum of the Lorentz term, the convec- 

tion term, and the second order current term, all on an equal footing, detailed balance is 

regained. 

It should perhaps be noted that though the nonlinear coefficients at x-ray frequencies are 

much smaller than those at optical wavelengths, this is offset by the the ability to focus the 

driving beams much more tightly. Also, in the case of parametric down conversion, though 

the conversion efficiency from the vacuum field is reduced, the number of modes in k-space 

is greatly increased. 

We noted that the second order nonlinear effects we discuss here can be considered as as 

a combination of an electric quadrupole-type and a magnetic dipole-type nonlinearities. As 

was shown by P. S. Pershan (Phys. Rev. 130, 919 (1963)) these type of nonlinearities are not 

zero in materials having a center of inversion; i.e. second order nonlinear x- ray processes 

may occur in materials possessing inversion symmetry. 

SHG at X-Ray frequencies 

9.0.1    Nonlinearity 

For SHG process the nonlinear current density is (Y. R. Shen The Principles of Nonlinear 

Optics p. 543 ) 

J(2W) = 2^(?V^ ' ^ + (Vpo ' ^^) ' ^ (9'1} 
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Where q, m are the electron charge and mass respectively, u is the frequency of the funda- 

mental beam, po is electron chrage density (in the x-ray regime this is the Fourier component 

corresponding to the lattice reciprocal vector), E? is the electric field of the the fundamental 

beam, and e(2w) is the direction of the electric field of the second harmonic beam. 

9.0.2    Phase Matching for a Single Pump Beam 

The phase matching diagram for the Laue geometry is shown in Fig. 22 With fe,, and fe^and 

Q denoting the k-vectors of the fundamental, second harmonic, and reciprocal lattice vector, 

the phase matching condition for a second harmonic generation (SHG) process at x-ray 

wavelengths is 2fe, + Q = few. 

Q 

Figure 22: Phase matching diagram for x-ray SHG for a single fundamental beam, fe, few, 
are the wave vectors of the fundamental and second harmonic beams respectively. Q is the 
reciprocal lattice vector of the diamond crystal 

As is shown in Fig. 22, we define #w, and 6^ as the angles between the atomic planes 

and the fundamental beam and the second harmonic beam respectively. Ignoring dispersion, 

2fe, = fe^ and the phase matching condition is identical to that of Bragg's law for an x-ray 

beam at a frequency of 2UJ. However, dispersion does exist and 9^ and 62^ have values 

which are close to but different from the Bragg angle (at O^)- Of importance the SHG and 

Laue rocking curves do not overlap , thereby avoiding diffraction of the generated second 

harmonic beam. For the (111) reflection of diamond and for a second harmonic signal at 16 
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keV, the deviation of B^ from the Bragg angle is 24 /i rad. Using the dynamical theory of 

x-ray diffraction in the plane wave approximation (Dynamical Theory of X-Ray Diffraction, 

Andre' Authier, "Oxford Science Publication", New York, 2001), one finds that the Darwin 

width at 16 keV is 12 /i rad. Recently, by solving numerically the full coupled equations 

(including SHG and linear Laue diffraction), we found that for a fundamental spot size of 

2//m and assuming phase matching for the SHG , less than one percent of the generated 

second harmonic is linearly diffracted. We therefore neglect the linear diffraction of the 

second harmonic beam. 

9.0.3    Beam Profiles and Efficiency 

By using the undepleted pump approximation and neglecting the scattering of the generated 

second harmonic signal, together with the nonlinear susceptibility calculations, we have car- 

ried out calculations that predict the SHG efficiency and its dependance on the propagation 

distance. We also calculated the intensity profile in the transverse plane of the generated 

second harmonic beam. The slowly varying envelope equation at the second harmonic in the 

Laue configuration and for coplanar electric fields reads as 

A /     .   A  dE^ „   dE^\ 

=iX
sh9(E(u}))2+ 

i(y'(2uj) - x'M cos(20B) + 2cos(20B)<J0i + ix" C^)) E(2u) 

(9.2) 

po<72sin(20B)(4cos(20B)-lJ 

Here xsh9  =    wAX     *s *ne nonlinear susceptibility,^, is the vacuum 

Brag angle at the second harmonic, A is the vacuum wavelength at the second harmonic, 

X'(2UJ), x'(w) are the real parts of linear susceptibilities of the second harmonic and the fun- 

damental respectively.x"(2o;) is the imaginary part (loss) of the linear susceptibility of the 

second harmonic beam.   56\ is the angular deviation of the pump beam from the vacuum 
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Figure 23: (a)Normalized Intensity of the fundamental vs. x and z (b) SHG efficiency vs. x 
and z 

Bragg angle. The absorption of the pump is introduced by takin the pump field as a decaying 

exponent. 

The efficiency of the SHG process depends linearly on the intensity of the fundamental 

beam. Therefore we will focus the LCLS beam to a beam spot of a few microns . Though this 

yields the highest efficiency, it causes the second harmonic beam to be generated at an angle 

of 6W + 02U1 with regard to the fundamental driving beam. As a result, the beams overlap in 

space for a distance which is determined by the spot size of the fundamental beam and the 

angle between the two beams. For a pumping beam diameter of 2//m at 8 Kev, this distance, 

which we will refer as the "interaction length", is 10 //m. For transparent crystals which 

are thicker than interaction length, the SHG efficiency grows as the propagation length, and 

not as its square, as in conventional nonlinear optics (or in the case where this walk-off effect 

is negligible). This effect results in a reduction of the power of the the generated second 

harmonic and a spreading of the second harmonic signal in the transverse plane. This effect 

is shown in Fig. 23. Fig. 23(a) shows the normalized intensity of the fundamental vs. x (a 

coordinate parallel to the crystal's boundary) and z ( a coordinate normal to the boundary). 

Fig.   23(b) shown the efficiency of the SHG vs. x, z in normalized units. 

To estimate the efficiency we assume a fundamental flux of 4 x 109 photons per pulse at 

8keV, a pulse length of 2fs and beam diameter of 2 microns.   We have used the diamond 
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Figure 24: SHG efficiency vs. crystal thickness. 

(Ill) reflection for phase matching the nonlinear medium. Fig. 25 shows the efficiency as 

function of the diamond thickness. For short crystal thicknesses ( but thicker than the inter- 

action length) the efficiency increases linearly with the thickness, but at larger propagation 

distances, absorption plays a limiting important role, and the efficiency dependance on the 

propagation distance becomes sub-linear. The intensity profile for several crystal thickness 

are shown in Fig 24. One can see very clearly that the intensity profile is broaden with the 

crystal thickness. While for thickness of 20//m the beam diameter is still comparable to the 

beam diameter of the fundamental, for a thickness of WOfim the profile is 5 times broader, 

and for a 500/ira the profile is about 100 times broader than the intensity profile of the pump 

beam. 

9.0.4    Experimental Setup 

The anticipated second harmonic data rate is on the order of a single to ten photons per pulse 

when LCLS is operating in short pulse mode and the beam is focused to a 2 micron spot size. 

The expected signal is extremely small and background levels must be carefully considered. 

As such, a crystal analyzer will be used to isolate the generated second harmonic photons 
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Figure 25: Normalized profile of the SHG efficiency for several crystal thickness (a) 20//m 
(b) 100/xm, (c) 250/xm, and (d) 500/im 

from the elastic and inelastic background signal from fundamental and 3rd harmonic photons 

in the incident beam. A channel cut analyzer is needed to prevent background signal from 

double scattering events from the sample and first analyzer crystal. However, this scheme is 

dependent upon an incident beam that is free from 2nd harmonic photons. This is achieved 

using a combination of a silicon 111 monochromator, harmonic rejection mirror system and 

the chromaticity of the XPP focusing lens system. This combination of X-ray optics will 

create a spectrally pure beam of sufficient quality for the proposed experiment. A schematic 

of the setup, including photon numbers after each optical element, is displayed in upper part 

of Figure  26. 
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2 fs, 20 pC LCLS Operation at 8 keV 
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Figure 26: Upper: Schematic of the SHG experimental setup. A silicon 111 channel cut 
monochromator, 2 bounce harmonic rejection mirror system and beryllium compound re- 
fractive focusing lens will be used to prepare the incident X-ray beam. The expected photon 
numbers for the fundamental, 2nd and 3rd harmonic are displayed before the monochromator, 
after the monochromator and after the Harmonic Rejection Mirror system. A silicon 111 
analyzer crystal and photodiode will be used, with apertures, to detect the generated second 
harmonic signal. Lower: Schematic diagram for x-ray intensity correlation. 
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9.0.5    Correlation of the X-Ray Free Electron Laser (XFEL) 

The LCLS is expected to deliver femtosecond pulses with the high powers that are sufficiently 

high to allow observation of SHG. In the optical regime, SHG is now widely used in auto- 

correlators for measuring the pulse duration of sub 100 femtosecond pulses. It is therefore 

reasonable to believe that a similar technique may be established in the x-ray region. Lower 

part of Fig. 26 shows a possible scheme for autocorrelation measurement. The beam from 

the LCLS will be split into two portions.One portion of the beam will propagate through 

a delay line and then the two portions of beam will recombined at the nonlinear material. 

A second harmonic beam, proportional to the product of the intensities of two portion of 

the fundamental beam will be generated. The slow detector will integrate the intensity with 

respect to the time . By varying the delay time between the two portion of the beam, one 

can obtain the autocorrelation function of the beam intensity. 
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B    Chirped Crystal Simulation Code 

tic; 

format long; 

set(0,'defaultaxesfontsize',12); 

set(0,'dofaulttextfontsize',12); 

'/, Constants 

c - 3e8; 

hb - 6.63e-34/(2*pi); 
epsO - le-9/(36*pi); 

etaO » 377; 

'/, Number of data points for frequency variable 

NV - 1001; 

'/. Define number of points per 2*pi/dw for time domain 
NT - 10; 

'/, Temporal limits for plotting correlations 

taul » -6e-12; 

tau2 - 5e-12; 

tauhl - -5e-12; 
tauh2 - 5e-12; 

'/, Refractive index of SLT at 40 C (Bruner) 

ne.slt - inliue(['sqrt(4.502483 • (0.007294 + 3.483933e-8*(40 + 273.IB)"2)./((2*pi*3e8./w*le6)."2 - (0.185087 + 1.607839e-8*(40 + 273.15)~2)"2) 

'0.073423./((2*pi*3e8./w*le6)."2 -0.199595"2) + 0.001./((2*pi*3e8./w*le6)."2 -7.99724*2) - 0.02357*(2*pi*3e8./w*le6)."2)'], 'v'); 

'/,  Refractive index of CLN at 21 CfDieter Jundt, J0SAB 14, 3319) 0.4-5 urn 

ne.ln - inline(['sqrt(l + 2.9804*(2*pi*3e8./w/le-6).~2./((2*pi*3e8./w/le-6)."2 - 0.02047) + 0.5981*(2*pi*3e8./w/le-6)."2./' ... 
'((2*pi*3e8./w/le-6)."2 - 0.0666) + 8.9543*(2*pi*3e8./w/le-6)."2./((2*pi*3e8./w/le-6). "1  - 416.08))*], 'w'); 

no.ln - inline(['sqrt(l + 2.6734*(2*pi*3e8./w/le-6)."2./((2*pi*3e8./w/le-6).~2 - 0.01764) + 1.2290*(2*pi*3e8./w/le-6).'1./' ... 

'((2*pi*3e8./w/le-6)."2 - 0.05914) + 12.614*(2*pi*3e8./w/le-6)."2./((2*pi*3e8./w/le-6)."2 - 474.6))'], '»'); 

•/. Refractive index of 5% MgO doped CLN at 21 C (Dieter Jundt, J0SAB 14, 3319) 0.4-5 urn 

ne_mgo51n - inline(['sqrtO + 2.4272*(2*pi*3e8./w/le-6)."2./((2*pi*3e8./w/le-6)."2 - 0.01478) + 1.4617*(2*pi*3e8./w/le-6)."2./• ... 

*((2*pi*3e8./w/le-6)."2 - 0.05612) + 9.6536*(2*pi*3e8./w/le-6).'2./((2*pi*3e8./w/le-6)."2 - 371.216))'], 'w'); 
no_mgo51n • inline(['sqrtCl + 2.2454*(2*pi*3e8./w/le-6).*2./((2*pi*3e8./w/le-6)."2 - 0.01242) + 1.3005*(2*pi*3e8./w/le-6)."2./' ... 

'((2*pi*3e8./w/le-6).*2 - 0.05313) + 6.8972*(2*pi*3e8./w/le-6).*2./((2*pi*3e8./w/le-6).'2 - 331.33))'], 'w'); 

*/. Refractive index and nonlinear coefficient for generating crystal 
np - ne.slt; 
ns - ne.slt; 

ni • ne.slt; 

d - 12.9e-12;        y. d33 MgD:SLT 

V,  Refractive index and nonlinear coefficient for summing crystal 
nps - ne.ln; 

nss - ne.ln; 
nis - ne.ln; 

d« - 25.0e-12;      '/, d33 CLN 

% Define pump frequency 

wp - 2*pi*c/532.10e-9; 

'/,  Define pump power 
Pp - 6.9; 

*/. Define signal center frequency and bandwidth 
wsO - 2*pi*c/l000e-9; 

dw - 2*pi*3el0*300; 

'/. Define the QPM order 
qpm.order • 1; 

'/, Define average duty cycle 
dcycle - 0.5; 

'/. Define domain edge position noise (standard deviation, fraction of Ldnoise) 

'/.dnoise • l/sqrt(2)*0.375; 
dnoise * 0; 

'/. Define domain width to use for domain edge position noise fraction (set 

V.  to zero to use actual domain width 
Ldnoise - 3.5e-6; 

'/.Ldnoise - 0; 

%  Define minimum step size of mask writer 

tmask - 0.0e-6; 

'/, Set to 1 to use low gain assumption 
low_galn - 0; 

'/. Define crystal length 
L - 0.02; 
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'/,  Set to 1 for chirped crystal 

chirpedgc - 1; 

'/. Define chirp direction (redleft - 1 for red at z  - 0, blue at z • L) 

redleft - 0; 

'L  Set to 1 to perform phase compensation 

phasecomp - 0; 

% Set to 1 to apodlze 

apodize • 0; 

X  Set to 1 to filter the output spectrum 

filter_main_spec - 0; 

%  Define relevant frequencies 

ws.high - wsO + dw/2; 

ws_low - wsO - dw/2; 

ws_high_limit - 2*pi*c/603.55e-9; 

ws_low_limit • 2*pi*c/4500e-9; 

'/. Set frequency domain for 3*dv bandwidth centered at wsO 

'/,  but additionally bounded by [ws_low_limit, ws_high_limit] 

wl • ws_low - dw; 

w2 - ws_high + dw; 
if(ws_high + dw > ws_high_limit) w2 - ws_high_limit; end; 

if(ws_low - dw < ws_low_limit) wl • ws_low_limit; end; 

% Force lower bound at degeneracy (signal: ws > wp/2, idler: wp - ws) 

if(wl < wp/2) 

wl - wp/2; 

end 

ws - linspace(vl, w2, NW); 

wi - wp - ws; 

*/,  Define frequency interval of main spectrum 
iwlh " minCfindCws > wa_low>):max(find(ws < ws_high)); 

xxxxmxxxmxxxxxxxxx 
*/, Generating Crystal '/, 

*/,  Compute k vectors 
kp • np(wp)*wp/c; 
ks - ns(ws).*ws/c; 

ki - ni(wi).*wi/c; 

*/. Compute phase mismatch 
Dk - kp - (ks + ki); 

if(chirpedgc -- 1) 
'/.  Compute chirp rate 
if(redleft -- 1) 

DkO - spline(ws, Dk, ws_low); 

DkL - spline(ws, Dk, ws.high); 
else 

DkO - spline(ws, Dk, ws.high); 

DkL - spline(ws, Dk, ws_low); 
find 

zeta - -(DkL - DkO)/L; 

'/, Compute phase matching positions for linear k-vector chirp 

zpm - L + (DkL - Dk(iwlh))/zeta; 

else 
DkO - spline(ws, Dk, wsO); 

zeta - 0; 

end 

*/. Generate vector of domain lengths 

disp(sprintf('\nGenerating vector of domain lengths (generating crystal)...')); 

*/. Define chirping function (poling period as a function of z) 
zO - linspacefO, L, 1000); 

'/.  Calculate group velocities 
vgs - der(ws, ks, 1); 

vgi - der(wi, ki, 1); 
vgr » l./(l./vgs - l./vgi); 

if (chirpedgc — 1 ift phasecomp »• 1) 

V,  Store uncompensated phase matching position vector 
zpm_orig • zpm; 

'/, Compute approximate relative (signal - idler) group delay 

dphi_sp • (L - zpm_orig)./vgr(iwlh); 

'/, Remove third order dispersion 

*/,P • polyfit(ws(iwlh) - wsO, dphi.sp, 2); 

*/,dphi_sp_pc - dphi.sp - P(l)*(ws(iwlh) - ws0)."2; 
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'/, Remove fifth order dispersion 

*/.P - polyfit(ws(iwlh) - wsO, dphi.sp, 4); 
*/.dphi_sp_pc - dphi_sp - P(l)*(ws(iwlh) - vs0).~4; 

'/, Force linear chirp 

'/.dphi_sp_pc • (dphi_sp(end) - dphi_sp(l))/(ws_high - ws_low)*(ws(iwlh) - ws_lo«) + dphi_sp(l); 

*/, Force zero 5th and higher order dispersion 

*/.P - polyfit(ws(iwlh) - wsO, dphi.sp, 3); 

'/.dphi_sp_pc • polyvaKP, ws(iwlh) - wsO); 

'/• Force zero 3rd and higher order dispersion 

%P - polyfit(ws(iwlh) - WBO, dphi.sp, 1); 

%dphi_sp_pc - polyvaKP, ws(iwlh) - wsO); 

*/, Force zero 4th and higher dispersion and fix TOD/GDD ratio 

P - polyfitCws(iulh) - wsO, dphi.sp, 2); 

P(l)   - 1/2*(P(2)*359.6/235.8*16-15);   V. 2*P(1)   - TOD,   P(2)   - GDD,   ratio used here is for fused silica at 966.2 
dphi_sp_pc  - polyvaKP,   us(iwlh)   - wsO); 

7, Ensure that pairs phase matched  at the output  of the crystal have zero 
% relative  group  delay   (this  fixes  zpm at  L for  those  pairs) 
if(redleft -- 1) 

dphi_sp_pc - dphi_sp_pc   - spline(ws(iwlh),   dphi_sp_pc,   ws_high); 
else 

dphi_sp_pc  - dphi_sp_pc   - spline(wsCiwlh),   dphi_sp_pc,   ws_low); 
end 

'/, Compute chirping  function 
zpm • L - vgr(iwlh).*dphi_sp_pc; 
pp - 2*pi./spline(zpm,   Dk(iwlh),   zO); 

else 
pp - 2*pi./(DkO   - zeta*zO); 

end 

if(tmask  —  0) 
*/, Ideal mask writer 
Ld - []; 
z  - 0; 
while(z  < L) 

dz - interplCzO, pp, z)*qpm_order*dcycle; 

dcycle • 1 - dcycle; 
Ld - [Ld dz]; 
z - z + dz; 

end 

else 

'/. Non-ideal mask writer 
z - 0; 
zm - 0; 
zdr -  []; 
while (zm < L) 

dz - interpKzO,   pp,   z)*qpm_order*dcycle; 
dcycle • 1  - dcycle; 
7. - z + dz; 
zm - zm + round(dz/tmask)*tmask; 
if(z - zm > tmask/2) 

zm • zm + tmask; 
else 

if(z - zm < -tmask/2) 
zm • zm - tmask; 

and 
end 
zdr  -   [zdr zm]; 

end 
Ld - diff([0 zdr]); 

end 

V.  Add domain noise 
'/, Form a vector of the positions of the right edges of each domain 

zdr • cumsum(Ld); 
V. Perturb these edges 

if(Ldnoise -- 0) 

for il - l:length(Ld) 
zdr(il) - zdr(il) + dnoise*Ld(il)*sqrt(-2*log(rand))*cos(2*pi*rand); 

end 

else 

for il - l:length(Ld) 
zdr(il) • zdr(il) + dnoise*Ldnoise*sqrt(-2*log(rand))*cos(2*pi*rand); 

end 

end 

'/, Reconstruct domain length vector 

Ld - diff([0 zdr]); 

X Fix crystal length 

L - sum(Ld); 

'/,  Perform apodizing 
apodmask - ones(l, length(Ld)); 

if(chirpedgc — 1 ftft apodize -- 1) 
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'/. Define apodization function in polynomial form 

*/, The apodization function should be the probability that a reversal is 

%  NOT removed. 
'/.Papod - [-5.069304641499887e-45 2.849462981101168e-29 -5.116363656404832e-14 29.64933346525240]; 

'/.fapod - spline(zpm, polyval(Papod, ws), zdr); 

'/. Assume all frequency components confocally focused 

Ap - 2*pi*c/wp*L/(4*np(wp)); 
As - 2*pi*c./ws*L./(4*ns(ws)); 

Ai - 2*pi*c./wi*L./(4*ni(wi)); 

etap • etaO/npCwp); 

etas - eta0./ns(ws); 

etai - eta0./ni(wi); 

'/. Compute gain constant 
kappa - epsO*d*sqrt(8*hb*wp»ws.*wi*etap.*etas.*etai*Ap.«As.*Ai ... 

./(Ap*As + Ap*Ai + As.*Ai).~2); 

fapod - kappa(iwlh(end))./kappa(iwlh); 

'/. Compute apodization function (probability vs. z that a reversal is 

'/. NOT removed) 
fapod - spline(zpm, fapod, zdr); 

winf - 3; 
win - (1 - cos(2*pi*(l:round(length(fapod)/winf))/(length(fapod)/winf)))/2; 

win • [win(l:round(length(win)/2)) onesO, length(fapod) - length(win)) win(round(length(win)/2)+l:end)]; 

'/.fapod • fapod. *win; 

7. Fix erroneous downturn due to polynomial end behavior 

7,fapod(find(fapod • max(fapod)):end) - 1; 

7. Compute target function to compare against when integrating 

'/, normalized nonlinearity 
target • cumslmp(zdr, fapod); 

'/, Compute period widths 

if(mod(length(Ld), 2) —0) 

Lp - Ld(l:2:end) + Ld(2:2:end); 
else 

Lp - Ld(l:2:end-1) + Ld(2:2:end); 

end 

X Compute period mask  (0 for no reversal,   1 for reversal) 
prmask • onesO,   f loor(length(Ld)/2)) ; 

for  il -  1:length(Lp) 
if(sum(Lp(l:il).*pnnask(l:il))   > target(il*2   -  1)) 

prmask(il)   • 0; 
end 

end 

apodmask(2:2:end)   - 2*prmask -  1; 
end 

7.7.7.7.7.7.7.7.7.'/.7.7.7.y.7.%,///.7. 
7. Summing Crystal 7. 

9GX3GXXXXXXXXXXXXXXXX 

'/,  Compute k vectors 
kps • nps(wp)*wp/c; 

kss - nss(ws).*ws/c; 
kis - nis(wi).*wi/c; 

V.  Compute phase mismatch 
Dks - kps - (kss + kis); 

V,  Compute phase mismatch at center frequency 
DksO - spline(ws, Dks, wsO); 

7. Modify crystal length as necessary to achieve a close match correlation 

Ls - le-3; 

'/, Generate vector of domain lengths 

disp(sprintf('Generating vector of domain lengths (summing crystal)...')); 

7. Define chirping function (poling period as a function of z) 
zO - linspace(0, Ls, 1000); 

pp - ones(l, Iength(z0))*2*pi./Dks0; 

if(tmask — 0) 
V.  Ideal mask writer 
Lda - []; 
z - 0; 

while(z < Ls) 
dz • interpKzO, pp, z)*qpm_order*dcycle; 

dcycle - 1 - dcycle; 
Lds - [Lds dz]; 

z - z + dz; 
end 

else 
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X Non-ideal mask writer 
z - 0; 
zm - 0; 
zdrs -   [] ; 
while (zm < Ls) 

dz • interpKzO,   pp,   z)*qpm_order*dcycle; 
dcycle • 1 - dcycle; 
z - z + dz; 
zm - zm +• round(dz/tmask)*tmask; 
if(z - zm > tmask/2) 

zm • zm + tmask; 
else 

ifCz - zm < -tmask/2) 
7Bi • TTTi — tmask; 

end 
end 
zdrs -   [zdrs zm]; 

end 
Lds - diif([0 zdrs]); 

end 

'/, Add domain noise 
*/, Form a vector of the positions  of the right  edges of each domain 
zdrs  - cumsum(Lds); 
'/. Perturb these edges 

ifCLdnoise -- 0) 
for il - i:length(Lds) 

zdrs(il) - zdrs(il) + dnoise*Lds(il)*sqrt(-2*log(rand))*cos(2*pi*rand); 

end 
else 

for il - l:length(Lds) 

zdrs(il) - zdrs(il) + dnoise*Ldnoise*sqrt(-2*log(rand))*cos(2*pi*rand); 

end 

end 

'/. Reconstruct domain length vector 

Lds - diff([0 zdrs]); 

*/, Fix crystal length 
Ls - sum(Lds); 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
'/. Compute ABCD Matrix: Generating Crystal '/. 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

% Compute sqrt pump photons/s 

bp - sqrt(Pp/(hb*wp)); 

'/, Assume all frequency components confocally focused 
Ap • 2*pi*c/wp*L/(4*np(wp)); 

As - 2*pi*c./ws*L./(4*ns(ws)); 

Ai - 2*pi*c./vi*L./(4*ni(vi)); 

etap • eta0/np(wp); 
etas - eta0./ns(ws); 

etai • eta0./ni(wi); 

% Compute gain constant 

kappa » epsO*d*sqrt(8*hb*wp*vs.*wi*etap.*etas.*etai*Ap.*As.*Ai ... 

./(Ap*As + Ap*Ai • As.*Ai)._2); 

'/, Compute overlap factors separately for reference 

gs - 2*Ap.*Ai./(Ap.*As • Ap.*Ai + As.*Ai); 

gi - 2*Ap.*As./(Ap.*As + Ap.*Ai + As.*Ai); 

gp - 2*As.*Ai./(Ap.*As + Ap.*Ai + As.*Ai); 

disp(sprintf('Computing ABCD matrix (generating crystal)...')); 

Al » zeros(l, length(ws)); 
Bl - zeros(l, length(ws)); 

Cl - zeros(l, length(ws)); 
Dl - zerosCl, length(ws)); 

zdl - cumsum([0 Ld(l:end-1)]); 

sgnd - 2*mod(l:length(Ld), 2) - 1; 
sgnd - sgnd.*apodmask; 

if(low_gain »» 1) 

% Low gain assumption: simply integrate signal and idler propagation 

'/, equations independently 

for il • 1:length(vs) 

M12 - sum(sgnd*kappa(il)*bp/Dk(il).*(exp(i*Dk(il)*(zdl + Ld)) - exp(i*Dk(il)*zdl))); 

Al(il) - exp(i*ks(il)*L); 
Bl(il) - M12*exp(i*ks(il)*L); 

Cl(il) - conj(H12)*exp(-i*ki(il)*L); 

Dl(il) - exp(-i*ki(il)*L); 
end 

else 

%  High gain: integrate coupled equations for each slab iteratively 
'/, Note that only the sign of kappa changes domain-to-domain; s • const 

s - sqrt(bp*2*kappa. "1  - Dk.*2/4); 

All - exp(i*Dk*Ld(l)/2).*(cosh(s*Ld(l)) - i*Dk./(2*s).*sinh(s*Ld(l))); 
Bli - i*bp*kappa./s.*exp(i*Dk*(zdl(l) + Ld(l)/2)>.*sinh(s*Ld(l)>; 
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for il - 2:length(Ld) 
A2i - exp(i*Dk*Ld(il)/2).*(cosh(s*Ld(il)) - i*Dk./(2*s).*sinh(s*Ld(il))); 

B2i - i*bp*sgnd(il)*kappa./s.*exp(i*Dk*(zdl(il) • Ld(il)/2)).*BinliC8*Ld(il)); 

Alin - Ali.*A2i + conj(Bli),*B2i; 

Blin - Bli.*A2i + conj(All).*B2i; 

All - Alin; 

Bli - Blin; 
end 

Al - Ali.*exp(i*ks*L); 
Bl - Bli.*exp(i*ks*L); 

Cl - conj(Bli).*exp(-i*ki*L); 

Dl - conj(All).*exp(-i*ki*L); 

end 

*/. Apply a band pass filter to the main spectrum 

if (filter_main_spec — 1) 

HF - ones(l, length(ws)).*(ws > ws_low - dw/4 ft ws < ws.high + dw/4); 

Al - A1.*HF; 

Bl - B1.*HF; 
Cl - Cl.*conj(HF); 
Dl - Dl.»conj(HF); 

end 

7. Compute Transfer Function: Summing Crystal % 

xmxmxmmmxmxxmxxxxmmxmxmx 
'/. Assume all frequency components confocally focused 
Aps - 2*pi*c/wp*Ls/(4*nps(wp)); 

Ass - 2*pi*c./ws*Ls./(4*nss(ws)); 
Ais - 2*pi*c./wi*Ls./(4*nis(wi)); 

etaps - etaO/nps(wp); 

etass - etaO./nss(ws), 

etais - etaO./nis(wi); 

'I,  Compute gain constant 
kappas - epsO«ds*sqrt(8*hb*wp*ws.*wi*etaps."etass.-etais*Aps.*Ass.*Ais ... 

./(Aps*Ass + Aps*Ais + Ass.*Ais).*2); 

V, Compute overlap factors separately for reference 
gss - 2*Aps.*Ais./(Aps.*Ass + Aps.*Ais • Ass.*Ais) 

gis - 2*Aps.*Ass./(Aps.*Ass • Aps.*Ais • Ass.*Ais) 

gps • 2*Ass.*Ais./(Aps.*Ass + Aps.*Ais + Ass.*Ais) 

disp(sprintf('Computing transfer function (summing crystal)...')); 

ESP - zerosd, length(ws)); 

zdls - cumsum([0 Lds(l:end-1)]); 

sgnds - 2*mod(l:length(Lds), 2) - 1; 

for il - l:length(vs) 

H12 - sum(sgnds*kappas(il)/Dks(il).*(exp(-i*Dks(il)*zdls) - exp(-i*Dks(il)*(zdls + Lds)))); 

ESP(il) - M12*exp(i*kps*L); 

end 

xxxxxxxxxxxxmxx 
'/. PSD and Phase '/. 

y:av:/:/:/x/:/:/:/x/:/:a 

'/, Compute signal power spectral density 
Ssl - l/(2*pi)*abs(Bl).~2; 

'/. Calculate paired generation rate 
R - simp(ws, Ssl); 

'/. Plot signal power spectral density 

figure; 
plot(ws, Ssl, 'k-'); 

title(sprintf('Signal power spectral density (R - %.3e (s"{-l»)', R)); 

xlabeK '\omega (rad/s) ') ; 

ylabel('S_s(\omega) (s_{-l}/rad)'); 

'/. Compute biphoton phase (signal + idler), relative delay, and GDD 
phi - unwrap(angle(Al.*conj(Cl)), pi); 

dphi - der(phi, ws. 1); 

d2phl - derCphi, ws, 2); 

'/, Plot phase, delay, and GDD 

figure; 

subplot(311); 
plot(ws(iwlh), phi(iwlh), lk-'); 

axis tight; 
titleCBiphoton phase') ; 

xlabeK ' \omega (rad/s)'); 

ylabelC Phase (rad)'); 
subplot(312) ; 

plot(ws(iwlh). dphi(iwlh), 'k-'); 

axis tight; 

title('Signal/idler relative group delay'); 
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xlabel('\omega (rad/s)'); 

ylabelC'Group delay Cs)'); 

subplot(313); 

plot(ws(iwlh), d2phi(ivlh), 'it-'); 
axis tight; 

titleCBiphoton  GDD'); 
xlabelC \omega   (rad/s)'); 
ylabeH'GDD   <s*2/rad)'>; 

'/. Calculate average GDD and TOD based on nth order fit to phase in significant 

*/, frequency region 

P - polyfit(wsUwlh) - wsO, phi(iwlh), 3); 

GDD - 2*P(2); 

TOD - 6*P(1); 

%06D - 120*P(1); 

'/. Show fit in phase plot 
'/.subplot (311); 
'/.hold  on; 
'/,plot(ws(iwlh),   polyvaKP,   ws(iwlh)   - wsO),   »k—'); 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxmxxxxx 
% Specify Optical System and Compressor % 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

% Signal optical system transfer function 
HI - 1; 

% Idler optical system transfer function 

Gl - 1; 

'/, Compressor transfer function (signal path) 

XHC « 1; 

%HC - exp(-i*phi); 

*/, Femtolaser coating 

phlc - -4.640e-42*ws.*3 + 2.552e-26*ws."2 - 0.00225*sin(3.3333e-13*ws); 

phic • phic - polyval(polyfit(ws, phic, 1), ws);       '/,  Remove time delay 
phic - phic* 13; */. Number of bounces 

HC - exp(i*phic); 

'/, Compressor transfer function (idler path) 

GC - 1; 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
'/. Uncompressed Correlations */, 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

dlsp(sprintf('Computing uncompressed correlations...')); 

V,  Specify ABCD coefficients incident on the summing crystal (i.e. after the 
V,  optical system) 
A2 - A1.«H1; 

B2 - B1.*H1; 

C2 - Cl.»conj(Gl); 
D2 - Dl.*conj(Gl); 

7, Use Fourier transform to compute vavefunction 
WB - FTCreate(uS(2) - ws(l), 2*pi/du/NT); 

tau - FTDomain(Ws); 

*/. Compute the wavefunction without summing 

psi2 • l/(2*pi)*exp(i*(wp - wsO)*tau).*IFTCP(interpl(ws - wsO, A2.*conj(C2), Ws, 'nearest', 0), Ws); 

fbi - abs(psi2)."2; 

'/, Compute the uncompressed SFG rate 
Rmq - l/(4*pi*2).*abs(IFTCP(interpl(ws - wsO, A2.*conj(C2).*ESP, Ws, 'nearest', 0), Ws))."2; 

'/, Plot wavefunction amplitude squared 

figure; 
plotftau, fbi, 'k-'); 

V - axis; axis([taul tau2 V(3) V(4)]); 

titleCBiphoton intensity (uncompressed) l<a_s(t) a_i(t - \tau)>l"2'); 
xlabel('\tau (s)'); 

'/. Plot quantum sum photon rate for the non-chirped crystal 
figure; 

plot(tau, Rmq, 'k-', tau, fbi/max(fbi)*max(Rmq), 'k—'); 

V - axis;   axis([taul   tau2 V(3)  V(4)]); 
title(sprintf('Non-chirped  quantum sum photon rate   (uncompressed,   L_s • V,.3i   (mm))',   Ls/le-3)); 
xlabelCUau   (s)'); 
ylabelCR_{mq}   (s^-1})'); 
legend('R_{mq}',    '\proptol<a_s(t)   a_i(t  - \tau)>l"2",    'Location',   'Best'); 

xxxxxxxxxxxxxxxxxxxxxxxxxxx 
'/, Compressed Correlations % 

XXXXXXXXXXXXXXXXXXXXXXXXXXX 

disp(sprintf('Computing compressed correlations. ..')); 

'/. Specify ABCD coefficients incident on the summing crystal (i.e. after the 
7. optical system) 
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A2 - A1.*H1.*HC; 

B2 - B1.*H1.*HC; 
C2 - Cl.*conj(Gl).*conj(GC); 

D2 - Dl.*conj(Gl).*conj(GC); 

7, Compute the wavefunction without summing 

psi2h - l/(2*pi)*exp(i*(wp - wsO)*tau).*IFTCP(interpl(ws - wsO, A2.*conj(C2), Ws, 'nearest', 0), Ws); 

fbih - abB(psi2h)."2; 

'/, Compute the uncompressed SFG rate 

Rmqh - l/(4*pi~2).*abs(IFTCP(interpl(ws - wsO, A2.*conj(C2).*ESP, Us, 'nearest', 0), Ws))."2; 

% Plot wavefunction amplitude squared 

figure; 

plot(tau, fbih, 'k-'); 

V - axis; axis([tauhl tauh2 V(3) V(4)]>; 

titleCBiphoton intensity (compressed) |<a_s(t) a_i(t - \tau)>l~2'); 

xlabel('\tau (s)'); 

'/, Plot quantum sum photon rate for the non-chirped crystal 

figure; 

plot(tau,   Rmqh,   'k-',   tau,   fbih/max(fbih)*max(Rmqh),    'k—'); 
V -  axis;   axis([tauhl   tauh2 V(3)   V(4)]); 
title(sprintf('Non-chirped   quantum sum photon rate   (compressed,   L_s • */..3f   (mm))',   Ls/le-3)); 
xlabel('\tau   (s)'); 
ylabel('R_{mq}   (sM-O)'); 
legend('R_{mq}', '\proptol<a_s(t) a_i(t - \tau)>l"2', 'Location', 'Best'); 

'/, Combine plots onto one figure 

figure; 

subplot(221); 

plot(2*pi*c./ws*le9, Ss1, 'k-'); 
V - axis; axis([2*pi*c/ws(end)*le9 2*pi*c/ws(l)*le9 V(3) V(4)]); 

title({'Signal power spectral density'; sprintf('(R - %.3e Cs"{-1}))', R)}); 

xlabelCMambda (nm) ') ; 

ylabel('S_s(\lambda) (s*{-l}/rad)'); 

subplot(222); 
plot(2*pi*c./ws(iwlh)*le9. phi(iwlh), *k-'); 

axis tight; 
titleCBiphoton phase spectrum'); 

xlabel('\lambda (nm)'); 

ylabel('Phase (rad)'); 
subplot(223); 
plot(tau, Rmq, 'k-', tau, fbi/max(fbi)*max(Rmq), 'k—'); 

V - axis;   axis([taul  tau2 V(3)   V(4)]); 
title«'Quantum   SFG rate';   sprintff' (uncompressed,   L^s - */..3f   (mm))',   Ls/le-3)}); 
xlabel('\tau   (s)'); 
ylabel('R_{raq} (•"{-1})'); 
leg - legend('R_{mq}', '\proptol<a_s(t) a_i(t - \tau)>|~2', 'Location', 'Best'); 

set(leg, 'FontSize', 10); 

subplot(224); 

plot(tau, Rmqh, 'k-', tau, ibih/max(fbih)*raax(Rraqh), 'k—'); 

V - axis; axis([tauhl tauh2 V(3) V(4)]); 

title ({'Quantum SFG rate'; sprintff' (compressed, L_s - */..3f (mm))', Ls/le-3)}); 

xlabel('\tau (s)'); 

ylabel('R_{mq} (s~{-l})'); 
leg • legend('R_{mq}', '\propto|<a_s(t) a_i(t - \tau)>|"2', 'Location', 'Best'); 

set(leg, 'FontSize', 10); 

%  Report 
disp(sprintf C\nPaired rate: %.3e (s*-l)', R)); 

dispfsprintf('GDD (based on order (%.0f) fit): %.3e (fs"2)1, length(P) - 1, GDD/le-30)); 

dispfsprintf ('TOD (based on order ('/..Of) fit): %.3e (fs"3)', length(P) - 1, TOD/le-45)); 
disp(sprintf('Non-chirped summing crystal length: X*3f (ram)', Ls/le-3)) ; 

if(chlrpedgc •- 1) 

disp(sprlntf ('Poling period (generating crystal): Red: 'A At   (um), Blue: '/..4f (um)' , ... 

2*pi/spline(ws, Dk, ws_low)*qpm_order/le-6, 2*pi/spline(ws, Dk, ws_high)*qpm_order/le-6)); 
else 

disp(sprintf ('Poling period (generating crystal): */,.4f (um) ', 2*pi./Dk0*qpm_order/le-6)); 
end 

disp(sprintf ('Poling period (summing crystal): '/,.3f (um) ', 2*pi./Dks0*qpm_order/le-6)); 

'/. Display poling periods for SLT at 25 C 

TexpandSLT - 1 + 1.6e-B»(40 - 25) + 7e-9*(40 - 25)"2; 

if(chirpedgc — 1) 

disp(sprintf ('Poling period (generating crystal) at 25 C (SLT): Red: */..4f (um), Blue: y..4f (um)' , ... 

2*pi/spline(ws, Dk, ws.low)/TexpandSLT*qpm_order/le-6, 2*pi/spline(ws, Dk, ws_high)/TexpandSLT*qpm_order/le-6)); 
else 

disp(sprintf('Poling period (generating crystal) at 25 C (SLT): %.4f (um)', 2*pi./Dk0/TexpandSLT*qpm_order/le-6)); 

end 

'A Display poling periods for CLN at 25 C 
TexpandCLN - 1 + 14.8e-6; 

disp(sprintf('Poling period (summing crystal) at 25 C (CLN): 'AAt   (um)', 2»pi./Dk0/TexpandCLN*qpm_order/le-6)); 

elapsedtime   - toe; 
disptsprintfCXnElapsed  time:   X. If   (s)',   elapsedtime)); 
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Chapter 4 

Theory of EIT based Paired 

Photon Generation 

Correlated and entangled photon pairs are widely used in quantum communication, 

quantum cryptography [31] and quantum imaging [32, 33]. These photon pairs are 

usually produced via spontaneous parametric down conversion in nonlinear crystals. 

A few years ago a new approach to the generation of paired photons has been exper- 

imentally demonstrated by two groups, both use electromagnetically induced trans- 

parency (EIT) to generated paired photons in an otherwise opaque atomic medium. 

Working with hot atoms, Lukin and colleagues have demonstrated correlation be- 

tween generated pulses of light, as well as storage and delayed extraction [34]. Work- 

ing with a MOT, Kimble and colleagues have shown the generation of nonclassical 

photon pairs with a programmable delay [35]. Recently, the Harris research group at 

Stanford has demonstrated generation and rudimentary waveform control of narrow 

band biphotons [36]. More recently, Kolchin and colleagues have shown paired pho- 

ton generation with a single pump beam in a right angle geometry and paired photon 

generation in the ensemble of cold two-level atoms [37]. A long coherence length and 

a controllable bandwidth of the generated paired photons are the advantages of the 

new approach, which might be useful for such applications as long distance quantum 

29 
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communication [38] as well as biphoton waveform control and shaping J. 

4.1    Theory of paired photon generation 

This chapter describes the theory of correlated paired photon generation in a collec- 

tion of double A-type atoms [39]. Using the Heisenberg-Langevin method we evaluate 

and analyze spectral characteristics of the generated Stokes and anti-Stokes photons 

and their time-correlation properties. Of importance, we predict the regime when 

the correlation time of generated photons is determined by the group delay caused 

by EIT. This theoretical prediction as well as some theoretical aspects of this work 

has been outlined in Ref. [36]. The complete theoretical treatment of paired photon 

generation with and without the approximation, that the atomic population remains 

in the ground state, has been given in Ref. [39]. 

A- 
^ 

'fc Was 
Atomic cloud 

U)r 

r z 
D 

Figure 4.1: Energy level diagram and schematic for spontaneous backward-wave 
paired photon generation in an atomic cloud formed by double-A type atoms. In 
the presence of the pump and coupling lasers phase-matched, counter-propagating 
Stokes and anti-Stokes photons are generated into opposite directions. 

The schematic of the process considered here is shown in Fig. 5.7. In the presence 

two cw beams termed as the pump and coupling lasers with frequencies UJP and u/c, 

:In a right-angle geometry, where Stokes and anti-Stokes photons are generated and collected 
at right angles from the direction of the pump-coupling axis, applying the absorption mask on the 
pump beam allows us to create a biphoton with a precribed waveform. 
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paired spontaneous photons termed as Stokes and anti-Stokes are generated in the 

atomic cloud and propagate in opposite directions along the z axis. In order to keep 

the parametric gain small we choose the pump beam to be weak and detuned from the 

resonance transition |1) —>• |4). The intense coupling beam is tuned to resonance with 

the 12} —> 13) transition to enhance the atom-field interaction and provide EIT for the 

generated anti-Stokes photon. Under such conditions we expect a small fraction of the 

atomic population to be in the excited states while most of it remains in the ground 

state |1). The frequencies of the generated photons obey the energy conservation 

UJS + uas = UJP + u>c. In the presence of EIT the anti-Stokes photon escapes out of the 

atomic cloud with very slow group velocity. 

We note the connection to earlier work: Two-photon entanglement in type-II 

SPDC has been analyzed [40]. The possibility of quantum correlated and squeezed 

fields in backward wave EIT system has been predicted [41] and large parametric 

gain and oscillations have been observed [42]. Control of single photons has been 

discussed [43]. We also note the early studies on double-A atomic systems [44]. 

In this chapter we review and discuss in detail the system dynamics putting em- 

phasis on the influence of the EIT window on paired photon generation bandwidth. 

We show that at low parametric gain the atomic system can operate in two different 

regimes. In the first regime, where the group delay is small, the intensity correlation 

function shows Rabi oscillations. In the second regime, where the optical depth of the 

atomic sample and the group delay are large, phase-matching becomes the dominant 

process that controls the shape of the intensity correlation function. We examine 

the conditions required for the system to operate in the oscillatory and group delay 

regimes and discuss corresponding Stokes and anti-Stokes spectral generation rates. 

In particularly, we predict that the group delay regime requires the optical depth 

much higher that 10. This point has been missed in our earlier publication [36]. 

We also extend our theoretical treatment of paired photon generation to go beyond 

the ground state approximation. This allows us to properly include and analyze the 

effect of Langevin noise fluctuation on the atomic system and solve the problem of its 

return to the ground state after the emission of Stokes and anti-Stokes photon pairs. 

We also address the important questions:   1) "What are the effects of the optical 
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thickness of the atomic sample on paired and single photon generation?" 2) "Does 

every Stokes photon have its paired anti-Stokes photon?" 

We introduce and derive the biphoton wavefunction taking into account Langevin 

noise terms. We also derive and discuss the relation of the Stokes photon count rate 

to the classical gain coefficient in the Stokes channel. 

4.2    Heisenberg-Langevin description of paired pho- 

ton generation 

We consider a collection of identical double A-type atoms uniformly distributed within 

a pencil-shaped volume with cross section S and length L. We assume that the atomic 

sample is optically thin in the transverse direction, so that there is no radiation 

trapping effect in this direction. No restrictions are imposed on the optical thickness 

of the atomic sample in the z direction. We also assume that the pump and the 

coupling beams counter-propagate undepleted through the atomic medium. Under 

these assumptions we consider propagation of a single transverse spatial mode of 

radiation along the z axis. The pump and coupling laser beams are treated as classical 

quantities and their interaction with the medium is described semi-classically. In order 

to allow for the spontaneous initiation of the parametric fluorescence process, the 

generated weak Stokes and anti-Stokes fields are described by quantum-mechanical 

operators, in slowly varying envelope approximation: 

Ej+) = y 2^v&^z' *) exp (-Mi* + *% " f) ' (41) 

where subscript j denotes either Stokes or anti-Stokes photon, us = u>\ — u>2 + ACJM, 

uas = ^3 — &i i V — L x S is the interaction volume. 

Adopting the notations of Lukin and Fleischhauer   [45, 46], in the rotating wave 
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approximation we write the interaction Hamiltonian in continuous form as 

L 

V = —— / dz( Au>l4au{z,t) + g3laas{z,t)a31(z,t) 

o 

+ yCT32(2, t) + yff4i(z, *) + g42as(z, t)a42{z, t) + h.c. J ,   (4.2) 

where <jjk{z,t) are the collective slowly varying atomic operators, defined in the Ap- 

pendix 4.7.1, N is the total number of atoms in the atomic ensemble, Au>u is the 

detuning of the pump laser from the |1) -» |4) transition, ttc = Seaa^fy, = ^^£. 

are pump and coupling laser Rabi frequencies with EP,EC as the complex amplitudes 

of the electric fields, g3 = l^j-JL and gas = P31
h 

as are the coupling constants with pjk 

as the dipole moment for the |j) —> |fc) transition and Sj = \J^Tv as ^ne electric field 

of a single photon. 

The propagation of the Stokes and anti-Stokes fields and their interaction with 

the atoms are described by the set of Maxwell and Heisenberg-Langevin equations. 

The Heisenberg-Langevin equations are responsible for the atomic evolution: 

-Q-fjk = J:[V, ajk] - ~fjkajk + rfk + Fjk, (4.3) 

where jjh are the dephasing rates, rfk are the spontaneous emission rates, Fjk{z,t) 

are the collective atomic <5-correlated Langevin noise operators. The full set of the 

Heisenberg-Langevin equations is shown explicitly in Sec. 4.7.2 

The fluctuations of ^-correlated collective Langevin noise operators Fjk{z,t) is 

given by 

(Fjk(z,t)Frk,(z',t')) = -VjkJ,k,(z,t)5(t - t')5{z - z'), (4.4) 

where T>jkj>k' is a Langevin diffusion coefficient. The derivation of Eq.(4.4) and 

relevant diffusion coefficients is shown in Sec. 4.7.4. 
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The evolution of the annihilation as and creation a£s operators for the slowly vary- 

ing Stokes and anti-Stokes fields is described by the coupled propagation equations 

— + c— j as{z, t) = igsNa24{z, t) 

(d     d\ (4-5) 

Ydt ~ Cdz) ^Z,t^ = -^asNd^z.t). 

The following analysis of the system involves calculation of the expected values 

of quantum field operators and their combinations. We note that in the Heisenberg 

picture operators evolve and the system is always in its initial state, which in our case 

corresponds to no Stokes and anti-Stokes input beams at the left and right boundaries. 

4.3    Solution of Coupled Equations 

Due to complexity and nonlinearity it is not possible to obtain an analytic solution 

for the combined set of the field propagation equations and Heisenberg-Langevin 

equations. Nevertheless, under the condition that Stokes and anti-Stokes fields are 

much weaker than the coupling and pump fields, and Stokes and anti-Stokes photon 

densities are much smaller than the atomic density N/V [45], the Heisenberg-Langevin 

equations can be linearized with Stokes as and anti-Stokes aas fields as perturbation 

parameters. The linearization procedure is described in detail in the Appendix 4.7.3. 

In order to solve the set of the linearized Heisenberg-Langevin Eq. (4.35) and 

coupled propagation Eq. (4.5), we first Fourier transform them. Then, extracting the 

solutions for 024(0;), 631 (a;) and substituting them into Fourier transformed Eq.(4.5), 

we obtain the coupled equations for as(z,co) and a\s(z, —UJ) in the form 

das „ ,       v^ z-9  ? 0J + 9Ras + nsals = 2_^ £Q./Qi 

~7T      1   1 asaas   >   Kasas =  /  J KonJ<H 
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where <7n(u;), Tas(co) are the Raman gain, EIT profile coefficients respectively, KS(LO) 

and Kas(uj) are Stokes and anti-Stokes mode coupling coefficients. In Eq. 4.6 fai(z,uj) 

are the renormalized Langevin noise operators: fai(z,u>) = yjN/c  x  Fai(z,co). The 

sum is taken over the relevant Langevin noise operators {/2i,/24,/3i>/34}- 

The general solution of Eq. (4.6) can be written as 

-'*(12)+s/*-'M(«)A    (4-7) 

where M = (fr) 

For the following derivation, let us define the coefficients of matrix e~ML as 

= e~AL (4.8) 
A\   B\ , 

Due to the linearity of Eq. (4.7), the unknown variables a\(L) and aas(0) of the 

backward wave problem can be written as a linear combination of the initial boundary 

values and the noise terms: 

where 

a,(0) 

'A   B\      (M-Sfr   % 

,o D) " \   -%     i. 

(4.9) 

1 D[\ eM{z-L)  ( &i 

,° -k)        VC, 

(4.10) 

(4.11) 

The coefficients A,B,C and D are the functions of u, whereas Pai,Qai are the 

functions of u> and z. 
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4.4    Characteristics of generated photons 

4.4.1    Stokes and Anti-Stokes photon generation rates 

We evaluate the output generation rates of Stokes and anti-Stokes photons into a 

single transverse mode, for example, into a pair of mode-matched optical fibers. The 

generation rates at the corresponding boundaries Zj are 

Rj = l$(zvt)aj(zj,t)), (4.12) 

where subscript j denotes either Stokes or anti-Stokes photon, zs = L and zas = 0. 

Of importance are the spectral properties of the generated photons. The power 

spectrum of the output Stokes and anti-Stokes fields are related to their first order 

coherence functions Gj  (T) = (aj(zj,t)aj(zj,t + T)) as 

Rj{u) = jJ dre^Gf{r) (4.13) 
—oo 

We use the solutions for as(L, to) and a^(0, -to) field operators, given by Eq. (4.9), 

the commutation relations for the input field operators [a,j(zj, u>), OJ(ZJ, —UJ')] = L/(2nc)5(co+ 

u/) and Eq. (4.41).   We apply inverse Fourier transformation a(t) = Jdjje~wta{u) 

and a*(t) = J dwe~lulta)(—(ju) and obtain the Stokes and anti-Stokes generation rates 

from Eq. (4.12) in the form 

L 

R°=I % (|s|2+£ SdzKp^Pa)       (4-u) 
Oti,Otj   Q 

L 

on,aj 0 

The integrands of Eq. (4.14) and Eq. (4.15) are Stokes and anti-Stokes spectral 

generation rates respectively. 

As seen from Eq. (4.14) and Eq. (4.15), Stokes and anti-Stokes spectral generation 
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rates consist of parametric counts, characterized by the transfer functions C(u) and 

B(u), and of noise counts, that originate from Langevin noise fluctuations. If the 

pump is weak and far detuned, B(u) = —C(u>), and therefore the parametric terms 

in Stokes and anti-Stokes rates are equal. We also note that the contribution of 

Langevin noise fluctuations to spectral generation rates can not be neglected and 

becomes dominant at low optical depth of the atomic sample. 

Using the commutator conservation relation for the Stokes field at the right bound- 

ary z = L, obtained from Eq. (4.9), the Stokes spectral generation rate can be ex- 

pressed as 

R.(u) = \A\2 - 1 + E / tePoPaijP* (4-16) 

When the pump is far detuned from the atomic transition and Stokes photon losses 

are small, the contribution of Langevin noise fluctuation in Eq. (4.16) is negligible. 

Thus, the Stokes spectral generation rate can be written as 

Rs(u)^\A\2-l (4.17) 

Eq. (4.17) can be interpreted in terms of the quantum theory of linear amplifica- 

tion [47]: in the absence of the Stokes input beam and losses for the Stokes photon, the 

Stokes generation rate is just the additive noise caused by the amplification process, 

that is characterized by the gain coefficient A(u>). 

4.4.2    Two-photon intensity correlation function and bipho- 

ton wave-function 

In order to address another important issue - the time correlation properties of the 

generated photons, we calculate the Glauber two-photon correlation function of time 

delay r between Stokes and anti-Stokes photons: 

G?2as(r) = (al(L,t)al(0,t + T)aas(0,t + T)as(L,t)) (4.18) 
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Using the Stokes and anti-Stokes operators at the boundaries derived earlier 

[Eq. (4.9)] and the commutator relations for the input fields, we obtain the inten- 

sity correlation function as 

GS-as(T) = 

///"/da;1^2du;3^4e-iu;it-^2('+T)-'a'3(t+r)-'a;4t 

x (al{L,-ui)tfa8{0,-oj2)aaa(0,u3)aa(L,u)i))   (4.19) 

The intensity correlation function contains the fourth-order Langevin noise cor- 

relations. According to Gaussian moment theorem [48, 49] they can be decomposed 

preserving the order into the sum of the products of second order Langevin noise 

correlations. As a result the intensity correlation function can be simplified to 

G8
2
2OS(T) = (4,(0, t + r)ao8(0, t + r)) (a^L, t)as(L, t)) + | (oos(0, t + r)as{L, t)) |2 

= Gi1)(0)xG(V(0) + |$s_as(r)|
2 (4.20) 

The first term in Eq. (4.20) represents flat uncorrelated background, the second 

term, expressed through $a_QS(r) function, describes the correlation part. $s_as(r) 

is equal to 

$s_as(r) = (aOB(0, * + T)as{L, t)) (4.21) 
I 

=^-chet"T(BDt+£ SdzQ*aP^Pa) on,aj 0 

We note that e~luJst~luJaB^t+T^s^as(T) represents a two photon wavefunction or a 

biphoton wavefunction on the condition that peak value of normalized gs2as >> 1, 

where g(
s1as(r) = Gs

22as(r)/(Gs
1](0) x GiV(O)). 

Similarly, we can define $as_s(r) = (as(L,t)aas(0,t + r)).  This function can be 
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obtained in the form 

^as-s(T) = (4.22) 

L 

±[<L> e^ (ACT + W dzPaiVa^Q:) 
oti,aj 0 

For a wide range of input parameters we numerically verify that $as_s(r) = 

$8-as(T). 

For the case where Q,P/ALUU « 1 and AuJu/ju >> 1, we numerically verify that 

the contribution of Langevin noise fluctuations to $as_s(r) is negligible, therefore 

Eq. (4.22) can be simplified to 

$as-s(T) = ^-f<^ e%UJTAC* (4-23) 

4.5    Ideal Spontaneous Parametric Down Converter 

Before we proceed to the discussion of the interesting cases of the atomic correlation 

functions and photon spectral densities, we want to make an analogy to the well- 

known parametric down converter in crystals [40]. We consider the ideal model - 

non-degenerate parametric down converter in which a generated signal photon has a 

very slow group velocity Vg as compared to an idler photon. We assume that both idler 

and signal photon escape SPDC without losses, therefore the Langevin noise terms in 

Eq. (4.6) can be neglected. In crystals the coupling coefficient can be approximated as 

a constant over the broad spectral range KS(U) = nas{^) = «• We also neglect Raman 

gain gii(u)) and approximate EIT profile as T(CJ) = —iuo/Vg. Under these assumptions 

the signal and idler photons have identical spectral characteristics and rates. Using 

the Eq. (4.14), we obtain the photon spectral density R(ui) and spectrally integrated 

generation rate R — l/(2ir) J du>R(u>) in the form: 
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R(OJ) = |K| L sine 

R = Vg\n\zL. 

UJL 

(4.24) 

As seen from Eq. (4.24), the spectral bandwidth of the SPDC in crystals is limited 

by Aco ~ 2wVg/L due to the phase mismatch of the off-centered counts resulting from 

the group delay in the signal channel. In principle, the bandwidth can be made 

very small by making the group delay rg = L/Vg large. For the atomic system K is 

proportional to the atomic density M = N/V, therefore the spectral density of the 

generated photons scales as {ML)2. Taking into account that the EIT induced group 

velocity of a wave is Vg = Ql/(2rfizMais), where a^ = Pi3Wi3/(ce0/l7i3) is the atomic 

cross section of the |1) —> |3) transition, the total count rate scales linearly with ML. 
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Figure 4.2: Normalized signal-idler intensity correlation function for the ideal SPDC 
with the condition of a large group delay L/Vg for a signal photon. R is the paired 
photon generation rate. 

Fig. 4.2 shows the normalized signal idler intensity correlation function. Since 

the probability of emitting a photon pair is uniformly distributed along the crystal 

of length L and the signal photon has a group delay relative to the idler, the gs_i(T) 
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is expected to be the shifted rectangle with the width equal to the group delay rg = 

L/Vg. By varying the group delay we can control the width of the waveform. The 

peak height of g\\ is equal to \/{KL)
2
 and can be interpreted as a duty ratio: g\\ = 

1/(RTQ). In the regime of very small parametric gain KL « 1, which can be achieved, 

for example, by lowering the intensity of the pump, the atomic system can produce 

highly correlated photon pairs g\_{ » 1. 

4.6    EIT based Paired Photon Generator 

Now we turn from the discussion of the ideal SPDC to the discussion of the EIT 

based paired photon generator. In the EIT based generator, coupling between Stokes 

and anti-Stokes modes is bandwidth limited. Moreover, the generated Stokes photon 

undergoes Raman gain gii(u)), whereas a paired anti-Stokes photon propagates slowly 

and undergoes absorbtion at the poles of EIT profile LU = ±Qc/2. 

We first obtain the coefficients of Eq. (4.6) with the assumption that the pump is 

weak and far detuned from the |1) —• |4) transition and Ak = (kp+kc — ka — kas)-z = 0: 
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F„ = ^i';^1, (4.25a) 

^fej GM ' ^^ 
Ks = "'*= " (2^) -gjjT' (425c) 

- ( J&-) Vg^l^ah^^a, (4.25d) 

& = _ (JM ^^ZH, (4.25f) 

2>/2A, WH 

,as      y/2Qcy/Maj13 
£21 = 777-N » (4.25h G(u>) 

S I ^M ^^^. (4.2Si) Awi4y    >/2G(o;) 

c«»      2x/2(o; + ?712)v/7Va7i3 .        . 
£31 ^) , (4.25j) 

*" ~" [A^J GM ' (4>25k) 

where M is an atom density, G(u>) = \QC\2 — 4(u> + ijn)^ + H13), cr is the absorption 

cross section for all allowed transitions: a = au = ^24 = 023 = ci3- 
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4.6.1    Ground state approximation 

The approximation that the atomic population remains in the ground state 5"n = 1 

gives two significant diffusion coefficients T>u,2i = ^1\2 and ^13,31 = ^ correspond- 

ing to ^21,^31 Langevin noise operators. Due to small atomic population in the 

excited states, the rest of the diffusion coefficients are approximated as zeros and the 

corresponding Langevin noise operators are neglected [36]. 

We numerically examine the emission rates and intensity correlation function for 

the EIT based paired photon emitter. We take other parameters similar to those 

of a Rb MOT: atom density J\f = 1011 atoms per cm3, atomic cross sections a = 

C13 = C14 = cr24 = 10~9 cm2 and dephasing rates equal to one half of the Einstein A 

coefficient, i.e., 713 = 714 = 724 = 723 = 1.79 x 107 radians. We choose the strength 

and the detuning of the pump laser from the |1) —> |4) transition as Aw14 = 247i3 

and Qp/Au>i4 = 0.1. 

co (MHz) 

Figure 4.3: Transmission and phase mismatch as functions of detuning u> 

Fig. 4.3 shows the EIT transmission profile and phase mismatch as a function of 

the detuning of the anti-Stokes frequency u>. We take Qc = 6713, NoL = 11 and 

712 = 0. Fig. 4.4 shows the profiles of the coupling coefficient |K(U;)| and the Raman 
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Figure 4.4: Coupling constant and Raman gain as functions of detuning u>. 

gain coefficient Re(gR(ui)) for the same parameters as in Fig. 4.3. 

EIT based spontaneous emitters allow a variable emission bandwidth. The band- 

width and profile of the spontaneous emission rates are controlled by the strength of 

the coupling laser Qc and the optical depth of the atomic sample MoL., By reducing 

the strength of the coupling laser, the emission linewidth can be made much smaller 

than the natural linewidth, with the minimum width ultimately limited by the de- 

phasing rate 712 of the |1) —> |2) transition. At small optical depth MoL < 1, the 

Raman gain coefficient <7/j(w) and the coupling coefficients KS(U), Kas(u;) determine 

the emission spectrum. At high optical depth MoL > 1, the EIT transmission win- 

dow and the phase mismatch, introduced by a large group delay in the anti-Stokes 

channel, affect the spontaneous emission spectrum. 

In Fig. 4.5, Fig. 4.6 and Fig. 4.7 we show the variations of the coincidence count 

rate RC(T) in a 1 ns bin and the corresponding Stokes power spectral density depend- 

ing on the optical depth. With a bin size AT = 1 ns much smaller than the correlation 

time, the coincidence count rate is obtained from the intensity correlation function 

as RC(T) = AT(c/L)2GasLs(T). Compared to the ideal case, described earlier, the 

intensity correlation function and the emission spectrum for the EIT based atomic 

SPDC show some interesting features. The shape of the intensity correlation function 
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Figure 4.5: The oscillatory regime:  (a) Coincidence count rate in a 1 ns bin and (b) 
Stokes spectral generation rate. J\faL = 0.3, Q,c = 67^ and 712 = 0. 
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Figure 4.6: The group delay regime: (a) Coincidence count rate in a 1 ns bin and (b) 
Stokes spectral generation rate. NoL = 20, Qc = 67x3 and 712 — 0. 
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Figure 4.7: The group delay regime: (a) Coincidence count rate in a 1 ns bin and (b) 
Stokes spectral generation rate. MoL = 200, Qc = 6713, flp = O.3713 and 712 = 0. 
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Figure 4.8: Intensity correlation function with the correlation time smaller than the 
spontaneous decay time, Tr < Tg < 1/(2713). J\faL = 200, Q.c = 65713, 712 = 0 and 
1/(2713) = 25 ns. 
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and the emission profile depend on the relation of three characteristic times. The first 

is the inverse Rabi frequency of the coupling laser rr = 2ir/\jQ% — 7j3, the second is 

the group delay between Stokes and anti-Stokes photons rg = L/Vg = 2^i^MaL/Vl2
c 

and the third is a minimal pulse length required to pass through EIT medium [50] 

rp(min) = 81n(2)7i3v0VaZ/fi2. 

When the EIT effect is small, which occurs, for example, at low optical depth, the 

atomic system behaves like a single atom [51]. In such a regime the intensity corre- 

lation function reveals the damped Rabi oscillations (Fig. 4.5). The oscillations ob- 

served in the intensity correlation function have the time period of rr = 27r/ yfj| — 7^3 

and occur on the condition that rr > Tg, Tp(min) and the coupling laser is strong enough 

to force the oscillations to overcome damping VLC > 713. Once the metastable state |2) 

is excited by the Raman process |1) —• |4) —> |2), the probability amplitude between 

12) and |3) oscillates due to the strong interaction of the atoms with the resonant 

coupling beam. 

In Fig. 4.6 we show the intensity correlation function and Stokes emission spectrum 

in the group delay regime, where rg > rr and rg > Tp(mira). In this regime the width 

of the intensity correlation function is approximated by r9. Moreover, the frequency 

range over which the spontaneous generation occurs is filtered by the EIT window 

and mostly controlled by the phase-matching in the presence of large group delay 

in the anti-Stokes channel. A sufficiently wide EIT window rg > rp(min) requires 

high optical depth NaL > 10. In the presence of the non-zero dephasing 712, the 

maximum group delay and therefore the maximum width of the correlation function 

is limited by ~ 1/712- 

By increasing the optical depth of the atomic sample, the EIT window can be made 

substantially larger than the emission bandwidth. A large EIT window might be very 

useful for such applications as bi-photon waveform control and shaping. Fig. 4.7 

shows the intensity correlation function and the Stokes emission spectrum under such 

a condition, where NaL = 200. The tail of the correlation function decays on the 

time scale of rp(mjn). 

We also note that at high optical depth it becomes possible to achieve the Stokes- 

anti-Stokes correlation function with the width shorter than the spontaneous decay 
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time 1/(2713). Fig. 4.8 shows such a correlation function that is obtained for NaL = 

200 and ilc = 65713, where rr < Tg < 1/(2713). 

We turn next to the sharp peak at the leading edge of the correlation function of 

Fig. 4.7. This sharp peak is Sommerfeld-Brillouin precursor [52]. It has been observed 

in our theoretical plots for a long time. But only recently, when it was experimentally 

measured, we got interested in its nature. We thank Daniel J. Gauthier who suggested 

that this peak is the result of simultaneously generated Stokes and anti-Stokes photons 

that travel at nearly the speed of light in vacuum and arrive near-simultaneously at 

the photodetectors. He also pointed out to the similarity of this peak to precursors 

which have been extensively studied [52, 53, 54]. A precursor has an approximate 

width that is equal to the opacity width of the atomic transition in the optically thick 

medium. Similar to precursors, the sharp leading edge peak has a opacity width of 

the EIT profile [55]. 

4.6.2    No ground state approximation 

If the pump is weak and far detuned and therefore most of the atomic population is 

in the ground state, we verify that the ground state approximation gives a correct 

prediction for the Bi-photon function and the Stokes generation rate. Nevertheless 

it does not properly account for an atom return to the ground state |1). Ideally one 

would expect the Stokes and anti-Stokes rates to be equal, since an atom, making a 

complete cycle on the energy level diagram (Fig. 5.7), returns to the ground state. 

Even at zero dephasing rate 712 = 0 of the |1) —• |2) transition, the ground state 

approximation predicts the anti-Stokes generation rate to be smaller than the Stokes 

generation rate. For example, Ras/Rs = 0.65 for J\faL = 10, Qp/Au>u = 0.1 and 

ftc = 6713. 

In order to treat properly an atom's return to the ground state we will retain in 

Eq. (4.6) all four Langevin noise operators {/2i,/24>/3i>/34} and take into account 

small incoherent population in excited states, resulting from the steady state solutions 

of Eqs. (4.27a)-(4.27f). With these inclusions the solution of Eq. (4.6) predicts the 

Stokes and anti-Stokes spectral generation rates to be equal at a zero dephasing rate 
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7i2 = 0 [Fig. 4.9(a)]. A non-zero dephasing rate 712 7^ 0 reduces EIT and therefore 

introduces additional losses for anti-Stokes photons. As a result the output Stokes 

rate exceeds the anti-Stokes rate. For example, for NoL = 10, Qp/Auu = 0.1, 

^c = 6713 and 712 = O.6713 we obtain Ras/Rs « 0.8. The corresponding Stokes and 

anti-Stokes spectral generation rates are shown in Fig. 4.9(b). We believe that the 

"missing" anti-Stokes photons are absorbed and are then reemitted in a solid angle 

of 47r. The atomic sample is assumed to be optically thin in the radial direction. 
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Figure 4.9: Stokes (solid curve) and anti-Stokes (dash curve) spectral generation rates 
at (a) zero dephasing 712 = 0 and (b) non zero dephasing 712 = O.6713. NoL = 10, 
Slc = 6713 tip = 2.4713, Au;i4 = 24713 

Compared to the ideal SPDC, where each generated signal photon has its paired 

idler photon, the real atomic system has uncorrelated noise counts in both Stokes 

and anti-Stokes channels that result from Langevin noise fluctuations. In Fig. 4.10 

we examine the dependence of the Stokes (anti-Stokes) and paired count rates on 

the optical depth J\faL. The parameters for the curves are 712 = 0, Qc = 5713, 

Au>u = 24713 and flp/Auu = 0.1. The paired count rate (Rp) is defined as the area 

under the Stokes-anti-Stokes coincidence count rate function minus the area under 

the uncorrelated background. One may show that Rp ~ l/(2ir) f duj |AC*|2. At small 

optical depth the paired rate scales quadratically with the optical depth and is much 

smaller than the Stokes rate.   At high optical depth the paired rate varies linearly 



CHAPTER 4.   THEORY OF EIT BASED PAIRED PHOTON GENERATION 50 

CO 
I— 

T3 

03 
Q. 

c 
CD 

</> 
03 

o 
CO 

c 

</> 
a> 
o 

107 i                                              i                                      r 

106 
^^^ ^-5^ 

^^^ 
^**^ ^^ 105 - ^^^^ o ^ ^ a) 

10" - / 
-t—• 

o y 
-C / 
Q. 

103 

102 

ml 

'/ 
/ 
/ 
/ 
/ 

i              i              i 

0.1 10 100 

Optical Depth 

Figure 4.10: Stokes, anti-Stokes (solid curve) and Paired (dashed curve) photon gen- 
eration rates as a function of the optical depth. ttc = 5713, 712 = 0, Au>u = 247J3 and 
Qp/Au!u = 0.1. At optical depth of 100, the paired rate reaches 90% of the Stokes 
rate. 

with ftfaL and converges logarithmically to the Stokes emission rate. 

In this chapter we describe the theory of paired photon generation in double- 

A atomic system. With low parametric gain and high optical depth we show that 

the system can produce highly correlated photon pairs. The shape of the intensity 

correlation function and the emission bandwidth depend on the coupling laser Rabi 

frequency and the optical depth of the atomic sample. Compared to the ideal SPDC, 

paired photon generation in the double-A atomic system is affected by Raman gain in 

the Stokes channel and EIT in the anti-Stokes channel. EIT, through the absorption 

at the poles, cuts the emission bandwidth. In order to enter a regime where the EIT 
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window is sufficiently large and therefore the emission bandwidth is controlled to a 

large extent by the phase-matching process in the presence of large group delay, the 

optical depth of the atomic sample has to be large J\faL > 10. High optical depth 

substantially reduces the influence of Langevin noise fluctuations on paired photon 

generation so that the Stokes and anti-Stokes photons are generated mostly in pairs. 

We therefore suggest the use of a cigar shaped atomic cloud with high optical depth 

in the longitudinal direction. 

4.7    Mathematical Apparatus 

4.7.1 Collective slowly varying atomic operators 

To describe the quantum properties of the atomic system we use the collective slowly 

varying atomic operators [56, 57, 58, 46, 59] ajk(z,t), defined as 

ajk(z, t) = — ^ \J)i(k\ exP (-ifjkt + ikjkz), (4.26) 
"* i€Nz 

where the averaging is done over each atom i in a small interval Az that contains 

large number of atoms Nz » 1. The slowly varying variables are assumed to stay 

unchanged over Az. v\\ = u^ — u>\ + Au>u, u^ = u)\ — U2 + Aa>i4, i/14 = —1/41, 

^24 = -^42, the rest of ujk = LUJ -cok. /c3i = kas • z, ki2 = ks-z, feu = kp• z, k32 -kc-z 

are the projections of the anti-Stokes, Stokes, pump and coupling fc-vectors on the z 

axis, A43 = feu — &3i, k2\ = — A;24 + feu, the rest of kjk = —kkj. 

4.7.2 Heisenberg-Langevin equations 

The full set of Heisenberg-Langevin equations for the four state system consists of 16 

equations. Here, we show explicitly 10 of them, the other 6 for the adjoint off-diagonal 
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atomic operators are not shown. 

—044 = F44 - r4<744 (4.27a) 

d 
—<T4I = -F41 - (741 + «Awi4) cr4i (4.27b) 

+i f -pMoL^43 + 9aa\vii + -y (^11 - 044) 

^^33 = F33 - r3a33 (4.27c) 

+* I Posaos^l + y°"32 - 5a5<sO-13 ~ ~ya23 

—a32 = F32 - 732^32 (4.27d) 

+i f -gasa\sdl2 + gsa\aM + -± (a33 - a22) j 

022 = ^22 + T32cr33 + r42cr44 (4.27e) 
dt 

V —2"0"32 ~ 9sCls(742 + SsO-l^A + y°23 ) 

d 
—an = Fn + r31a33 + r41a44 (4.27f) 

+*      -ffa^as^l - -^-^"41 +^^^13 + ~1T^U 
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—<734 = F34 - (734 - iAuu) 0-34 (4.28a) 

+i f "^^31 + 9aas032 ~ 9asa{sau - y o24 

—5-31 = F31 - 731^31 (4.28b) 

+* I 5as<s (0"33 - 0"ll) - ya21 + ya34 

—cr24 = F24 - (724 - zAu>14) 0-24 (4.28c) 

+i f "y o2i - y 034 + 9s^s ^22 ~~ ^44^ ) 

—cr2i = F2i - 7210-21 (4.28d) 

+% \ 2~(731 ~ 5sas(T41 + 9asaasaM + y a24 

Here, for simplicity, we assume that Afc = (fcp 4- kc — ks — kas) • z = 0. In Eq. (4.27a)- 

Eq. (4.28d) Tt is the total decay rate from state \i), Ty is the decay rate from state 

\i) to state \j) and 7^ is the dephasing rate between state \i) and state \j). The 

dephasing rates for the double-A system in the absence of the collisional dephasing 

can be obtained from total decay rates T3 and r4 from state |3) and |4) to two ground 

states |1) and |2) as 

r3 73i = 732 = y (4.29) 

74i = 742 = y (4.30) 

^3 + T4 ,,„> 
743 = —7,— (4-31) 
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4.7.3    Linearization procedure 

In zeroth order perturbation expansion, in which ds and aas go to zero, the Heisenberg- 

Langevin equations for dn,du, 022, ^23, ^32-, ^33, ^41,^44 atomic operators are decou- 

pled. Under the assumption that pump and coupling beams propagate without de- 

pletion, we obtain the steady state solution for Eqs. (4.27a)-(4.27f) in form 

a% = (a%) + J2^mnFmn (4.32) 

With the definition of the denominator as 

r = r31(r2 + 4A^4 + 2|^p|2)|Qc 
i2 

Lc\ 

+ r42(il + 2|ftc|
2)|Qp|2,   (4.33) 

the steady state expectation values for the zeroth order atomic operators are equal 

to 

<ay - *»w2W+^ + M (4 34a) 

<5&) = l^l^lM (4.34b) 

<s&) = r« iyvia (4.34c) 

«> = F31 '^P'2 (4.34d) 

(a°u) = _r31(2Aa;14yr4)lQci2^ (4 ^ 

<«&> = ?r3r42^'^12, (4.34f) 

In the first order expansion, we substitute the zeroth order solution for the atomic 

operators Eq. (4.32) into the remaining Heisenberg-Langevin equations for 021,024) 

031 > 034 and their adjoint. Neglecting higher order terms like emnFmnas or em„Fmria^ 

we obtain the linearized equations. We note that the linearized Eqs.(4.28a)-(4.28d) 

for 021,024)031) 034 represent an independent set of equations and can be decoupled. 
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For clarity we write them in vector form 

a1=Aa1 + Ma + F1 (4.35) 
at 

where ax = {<r2i,cr24,0-31,(734}, Fi = {F21, F24,-£31,^34}, a = {as,a^s}, matrix A 

depends on the dephasing rates jjk and pump and coupling laser rabi frequencies 

flip, Qc, matrix M. depends on the zeroth order solution for the atomic operators 

4.7.4    Langevin noise operators and their diffusion coefficients 

By analogy with the collective slowly varying atomic operators <7jk(z, t), the collective 

Langevin noise operators are defined as 

Z Zi£Nz 

We assume that a Langevin noise operator for a single atom is (^-correlated so that 

(F^(t)F^(t')) = Vflfk,(t)5(t - tf)8ij (4.37) 

where (...) denotes the average over the reservoir, Vjkj,k,(t) is the atomic diffusion 

coefficient for an ith atom. 

Now we consider the second order correlations for the collective Langevin noise 

operators 

(FJh{t,z)FM<,*)) = 4 E (F^t)F^t(t'))8zz, (4.38) 
2  zteNz 

Introducing the average atomic diffusion coefficient 

VikMt>*) = jr E^it'fe'W (4-39) 
2 Zi£Nz 
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the noise correlations can be expressed as 

(Fjk(t, z)Fjlk,(t', z')) = -VjkJ/k,(t, z)S(t - t')8(z - z') (4.40) 

In case T>jkj>k'(t,z) is independent of t, in frequency domain the noise correlations 

are 

{Fjk(u, z)Fj>k>(u)', z')) = 2^x'DJi'j'k'8(u + J)5{z - z') (4.41) 

The diffusion coefficients T>jkj>k> can be obtained from the Heisenberg-Langevin 

equations (4.27a)-(4.28d) using the generalized fluctuation-dissipation theorem [60, 

61]. Here we show the diffusion coefficients for the Langevin noise operators of interest 

F2i,F24,F31,F34 and their adjoint F12,F42,Fl3,F43 

(   2 <(5-22> 712 + (0-33) T32 + (*44> T42 0 (<723> 712 0 ^ 

0 (CT22> T4 + (CT33) T32 + (<744> T42 0 (CT23) ^4 

<*32)7l2 0 0 0 

V 0 (CT32>r4 0 <CT33)r4 / 

/  2{CTU)7i2 + (a33>r3i + (a44)r4i (014)712 0 0 \ 

(041)712 0 0 0 

0 0 (on>r3 + <033>r3i + (o44)r4i (oi4)r3 

\ 0 0 (041) r3 (044) r3 / 

(4.42) 

(4.43) 

where on denotes {21,24,31,34} subspace for the atomic operators, a\ denotes 

{12,42,13,43} subspace for the adjoint atomic operators. 


